留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

以SBA-15为硅源合成多级孔SAPO-11分子筛及其在正十二烷临氢异构化中的应用

赵思梦 林明桂 郗宏娟 陈晓燕 王俊刚 贾丽涛 李德宝 侯博

赵思梦, 林明桂, 郗宏娟, 陈晓燕, 王俊刚, 贾丽涛, 李德宝, 侯博. 以SBA-15为硅源合成多级孔SAPO-11分子筛及其在正十二烷临氢异构化中的应用[J]. 燃料化学学报(中英文), 2018, 46(6): 700-709.
引用本文: 赵思梦, 林明桂, 郗宏娟, 陈晓燕, 王俊刚, 贾丽涛, 李德宝, 侯博. 以SBA-15为硅源合成多级孔SAPO-11分子筛及其在正十二烷临氢异构化中的应用[J]. 燃料化学学报(中英文), 2018, 46(6): 700-709.
ZHAO Si-meng, LIN Ming-gui, XI Hong-juan, CHEN Xiao-yan, WANG Jun-gang, JIA Li-tao, LI De-bao, HOU Bo. Hierarchical SAPO-11 prepared using SBA-15 as the silicon source and its application in n-dodecane hydroisomerization[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 700-709.
Citation: ZHAO Si-meng, LIN Ming-gui, XI Hong-juan, CHEN Xiao-yan, WANG Jun-gang, JIA Li-tao, LI De-bao, HOU Bo. Hierarchical SAPO-11 prepared using SBA-15 as the silicon source and its application in n-dodecane hydroisomerization[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 700-709.

以SBA-15为硅源合成多级孔SAPO-11分子筛及其在正十二烷临氢异构化中的应用

基金项目: 

中国科学院战略性先导科技专项 XDA07070700

详细信息
  • 中图分类号: O643

Hierarchical SAPO-11 prepared using SBA-15 as the silicon source and its application in n-dodecane hydroisomerization

Funds: 

the Strategic Priority Research Program of the Chinese Academy of Sciences XDA07070700

More Information
  • 摘要: 以脱除模板剂后的SBA-15为硅源和间接模板剂,在水热条件下制备多级孔SAPO-11分子筛,并通过XRD、SEM、红外光谱、氮气物理吸附-脱附等表征手段对样品的晶相、形貌、酸性和织构性质进行表征。结果表明,以焙烧后的SBA-15为硅源合成出纯相的SAPO-11分子筛,且SBA-15已完全转化。合成的SAPO-11样品呈空心的近方柱体形貌,由宽度为100 nm左右的细条聚集而成,晶粒粒径为1-3 μm。与白炭黑、硅溶胶合成的常规SAPO-11分子筛对比发现,添加SBA-15可在SAPO-11中引入介孔孔道,孔径为5-10 nm,且样品以中强度的Brønsted酸为主,弱Brønsted酸相对较少。以正十二烷为探针分子,考察Pt/SAPO-11催化剂的临氢异构化反应性能。结果表明,多级孔Pt/SAPO-11催化剂具有优良的异构化反应性能。催化剂的高活性和选择性与SAPO-11分子筛的酸性质和孔道结构密切相关,中强度的Brønsted酸量的增加有助于活性提高,同时介孔孔道有利于产物扩散,异构产物的选择性明显提高。
  • 图  1  SAPO-11分子筛的XRD谱图

    Figure  1  Wide angle XRD patterns of the SAPO-11 samples

    (a): as-synthesized SAPO-11; (b): calcined SAPO-11

    图  2  SAPO-11-S和SBA-15的小角XRD谱图

    Figure  2  Low-angle XRD patterns of the SAPO-11-S and SBA-15 samples

    图  3  SAPO-11分子筛样品的N2吸附-脱附等温线和孔径分布

    Figure  3  N2 adsorption-desorption isotherms and pore size distributions of the SAPO-11 samples

    (a): N2 adsorption-desorption isotherms; (b): pore size distributions

    图  4  SAPO-11分子筛的SEM照片

    Figure  4  SEM images of the SAPO-11 samples

    (a), (b): SAPO-11-S; (c), (d): SAPO-11-C; (e), (f): SAPO-11-F

    图  5  不同晶化时间的SAPO-11-S的SEM照片

    Figure  5  SEM images of the SAPO-11-S with different crystallization time

    (a): SBA-15; (b): 0.5h; (c): 1h; (d): 6h

    图  6  SAPO-11分子筛样品的FT-IR和Py-FTIR谱图

    Figure  6  FT-IR (a) and Py-FTIR (b) graphs of the SAPO-11 samples

    图  7  Pt/SAPO-11催化剂在正十二烷临氢异构化性能变化

    Figure  7  Variation of hydroisomerization performance of n-C12 over the Pt/ SAPO-11 catalysts

    (a): conversion of n-C12; (b): selectivity of i-C12; (c): yield of i-C12; (d): mono-branched i-C12/multi-branched i-C12

    表  1  SAPO-11分子筛样品的织构参数

    Table  1  Textural parameters of the SAPO-11 samples

    Sample ABET/(m2·g-1) Amicro/(m2·g-1) vtotal/(cm3·g-1) vmeso/(cm3·g-1) vmeso/vtotal /%
    SAPO-11-S 214 176 0.13 0.06 46
    SAPO-11-C 261 220 0.13 0.04 31
    SAPO-11-F 247 222 0.14 0.05 36
    下载: 导出CSV

    表  2  SAPO-11分子筛的Brønsted酸量和Lewis酸量

    Table  2  Amount of Brønsted and Lewis acid sites in the SAPO-11 samples determined by Py-FTIR

    Sample SiO2/Al2O3 Acidity /(μmol·g-1)
    150℃ 300℃
    B acid L acid B acid L acid
    SAPO-11-S 0.27 29 46 28 15
    SAPO-11-C 0.24 37 43 19 19
    SAPO-11-F 0.24 45 46 26 19
    下载: 导出CSV
  • [1] WANG Z, TIAN Z, TENG F, WEN G, XU Y, XU Z, LIN L. Hydroisomerization of long-chain alkane over Pt/SAPO-11 catalysts synthesized from nonaqueous media[J]. Catal Lett, 2005, 103(1):109-116.
    [2] AKHMEDOV V, AL-KHOWAITER S. Recent advances and future aspects in the selective isomerization of high n-alkanes[J]. Cat Rev-Sci Eng, 2007, 49(1):33-149. doi: 10.1080/01614940601128427
    [3] MILLER S. Studies on wax isomerization for lubes and fuels[J]. Stud Surf Sci Catal, 1994, 84:2319-2326. doi: 10.1016/S0167-2991(08)63796-9
    [4] TAYLOR R, PETTY R. Selective hydroisomerization of long chain normal paraffins[J]. Appl Catal A:Gen, 1994, 119(1):121-138. doi: 10.1016/0926-860X(94)85029-1
    [5] DELDARI H. Suitable catalysts for hydroisomerization of long-chain normal paraffins[J]. Appl Catal A:Gen, 2005, 293:1-10. doi: 10.1016/j.apcata.2005.07.008
    [6] GENG C, ZHANG F, GAO Z, ZHAO L, ZHOU J. Hydroisomerization of n-tetradecane over Pt/SAPO-11 catalyst[J]. Catal Today, 2004, 93(1):485-491. doi: 10.1007/BF02475517.pdf
    [7] HARTMANN M. Hierarchical zeolites:A proven strategy to combine shape selectivity with efficient mass transport[J]. Angew Chem Int Ed, 2004, 43(44):5880-5882. doi: 10.1002/(ISSN)1521-3773
    [8] FANG Y, HU H, CHEN G. In situ assembly of zeolite nanocrystals into mesoporous aggregate with single-crystal-like morphology without secondary template[J]. Chem Mater, 2008, 20(5):1670-1672. doi: 10.1021/cm703265q
    [9] PARK D H, KIM S S, WANG H, PINNAVAIA T J, PAPAPETROU M C, LAPPAS A A, TRIANTAFYLLIDIS K S. Selective petroleum refining over a zeolite catalyst with small intracrystal mesopores[J]. Angew Chem Int Ed, 2009, 121(41):7781-7784. doi: 10.1002/ange.v121:41
    [10] VERBOEKEND D, MILINA M, PEÉREZ-RAMÍREZ J. Hierarchical silicoaluminophosphates by postsynthetic modification:Influence of topology, composition, and silicon distribution[J]. Chem Mater, 2014, 26(15):4552-4562.
    [11] GROEN J C, ZHU W, BROUWER S, HUYNINK S J, KAPTEIJN F, MOULIJN J A, PÉREZ-RAMÍREZ J. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication[J]. J Am Chem Soc, 2007, 129(2):355-360. doi: 10.1021/ja065737o
    [12] FAN Y, XIAO H, SHI G, LIU H, BAO X. Alkylphosphonic acid-and small amine-templated synthesis of hierarchical silicoaluminophosphate molecular sieves with high isomerization selectivity to di-branched paraffins[J]. J Catal, 2012, 285(1):251-259. doi: 10.1016/j.jcat.2011.09.037
    [13] EGEBLAD K, KUSTOVA M, KLITGAARD S K, ZHU K, CHRISTENSEN C H. Mesoporous zeolite and zeotype single crystals synthesized in fluoride media[J]. Microporous Mesoporous Mater, 2007, 101(1):214-223.
    [14] SCHMIDT F, PAASCH S, BRUNNER E, KASKEL S. Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction[J]. Microporous Mesoporous Mater, 2012, 164:214-221. doi: 10.1016/j.micromeso.2012.04.045
    [15] SAÁNCHEZ-SAÁNCHEZ M, MANJOÓN-SANZ ADÍAZ I, MAYORAL ASASTRE E. Micron-sized single-crystal-like CoAPO-5/carbon composites leading to hierarchical CoAPO-5 with both inter- and intracrystalline mesoporosity[J]. Cryst Growth Des, 2013, 13(6):2476-2485. doi: 10.1021/cg4001768
    [16] NAYDENOV V, TOSHEVA L, STERTE J. Spherical silica macrostructures containing vanadium and tungsten oxides assembled by the resin templating method[J]. Microporous Mesoporous Mater, 2002, 55(3):253-263.
    [17] LIU Y, WANG L, ZHANG J, CHEN F, ANPO M. Preparation of macroporous SAPO-34 microspheres by a spray drying method using polystyrene spheres as hard template[J]. Res Chem Intermed, 2011, 37(8):949-959. doi: 10.1007/s11164-011-0302-2
    [18] CHU N, YANG J, LI C, CUI J, ZHAO Q, YIN X, WANG J. An unusual hierarchical ZSM-5 microsphere with good catalytic performance in methane dehydroaromatization[J]. Microporous Mesoporous Mater, 2009, 118(1):169-175.
    [19] MILETTO I, PAUL G, CHAPMAN S, GATTI G, MARCHESE L, RAJA R, GIANOTTI E. Mesoporous silica scaffolds as precursors to drive the formation of hierarchical SAPO-34 with tunable acid properties[J]. Chem Eur J, 2017, 23(41):9952-9961. doi: 10.1002/chem.v23.41
    [20] LIU Y, WANG L, ZHANG J, CHEN L, XU H. A layered mesoporous SAPO-34 prepared by using as-synthesized SBA-15 as silica source[J]. Microporous Mesoporous Mater, 2011, 145(1):150-156.
    [21] LOK B M, MESSINA C A, PATTON R L, GAJEK R T, CANNAN T R, FLANIGEN E M. Silicoaluminophosphate molecular sieves:another new class of microporous crystalline inorganic solids[J]. J Am Chem Soc, 1984, 106(20):6092-6093. doi: 10.1021/ja00332a063
    [22] 汪哲明, 阎子峰. SAPO-11分子筛的合成[J].燃料化学学报, 2003, 31(4):360-366. http://rlhxxb.sxicc.ac.cn/EN/Y2003/V31/I04/360

    WANG Zhe-ming, YAN Zi-feng. Synthesis of SAPO-11 molecular sieves[J]. J Fuel Chem Technol, 2003, 31(4):360-366. http://rlhxxb.sxicc.ac.cn/EN/Y2003/V31/I04/360
    [23] 刘强, 杜君臣, 张爱敏.酸、盐处理对Pt/SAPO-11物化及其催化性能的影响[J].燃料化学学报, 2017, 45(3):337-344. http://rlhxxb.sxicc.ac.cn/EN/article/downloadArticleFile.do?attachType=PDF&id=18998

    LIU Qiang, DU Jun-chen, ZHANG Ai-min. Effects of acid and salt treatment on physical and catalytic performance of Pt/SAPO-11[J]. J Fuel Chem Technol, 2017, 45(3):337-344. http://rlhxxb.sxicc.ac.cn/EN/article/downloadArticleFile.do?attachType=PDF&id=18998
    [24] 刘月明, 张凤美, 舒兴田, 何鸣元.影响SAPO-11分子筛焙烧前后晶胞空间群变化的因素[J].催化学报, 2003, 24(10):783-787. doi: 10.3321/j.issn:0253-9837.2003.10.015

    LIU Yue-ming, ZHAN Feng-mei, SHU Xing-tian, HE Ming-yuan. Factors affecting the spacer changes of SAPO-11 zeolite[J]. Chin J Catal, 2003, 24(10):783-787. doi: 10.3321/j.issn:0253-9837.2003.10.015
    [25] TAPP N J, MILESTONE N B, BOWDEN M E, MEINHOLD R H. Water adsorption on AlPO4-11:Structural changes[J]. Zeolites, 1990, 10(2):105-110.
    [26] ZHAO D, HUO Q, FENG J, CHMELKA B F, STUCKY G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. J Am Chem Soc, 1998, 120(24):6024-6036.
    [27] TATSUMI T, KOYANO K A, TANAKA Y, NAKATA S. Mechanochemical collapse of M41S mesoporous molecular sieves through hydrolysis of siloxane bonds[J]. Chem Lett, 1997, 26(5):469-470. doi: 10.1246/cl.1997.469
    [28] KIM J M, RYOO R. Disintegration of mesoporous structures of MCM-41 and MCM-48 in water[J]. Bull Korean Chem Soc, 1996, 17(1):66-68.
    [29] MERIAUDEAU P, TUAN V A, LEFEBVRE F, NGHIEM V T, NACCACHE C. Isomorphous substitution of silicon in the AlPO4 framework with AEL structure:n-octane hydroconversion[J]. Microporous Mesoporous Mater, 1998, 22(1):435-449.
    [30] NIEMINEN V, KUMAR N, HEIKKILÄ T, LAINE E, VILLEGAS J, SALMI T, MURZIN D Y. Isomerization of 1-butene over SAPO-11 catalysts synthesized by varying synthesis time and silica sources[J]. Appl Catal A:Gen, 2004, 259(2):227-234. doi: 10.1016/j.apcata.2003.09.038
    [31] YANG Z, LI J, LIU Y, LIU C. Effect of silicon precursor on silicon incorporation in SAPO-11 and their catalytic performance for hydroisomerization of n-octane on Pt-based catalysts[J]. J Energ Chem, 2017, 26(4):688-694. https://www.researchgate.net/profile/Sergio_Gonzalez-Cortes
    [32] 杨娜, 王红英, 柳云骐, 刘晨光.不同链长正构烷烃在Pt/SAPO-11催化剂上的临氢转化规律研究[J].燃料化学学报, 2016, 44(1):91-98. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18766.shtml

    YANG Na, WANG Hong-ying, LIU Yun-qi, LIU Chen-guang. Study on the transformation rule of different long chain alkane hydroisomerization over Pt/SAPO-11 catalyst[J]. J Fuel Chem Technol, 2016, 44(1):91-98. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18766.shtml
    [33] CAMPELO J M, LAFONT F, MARINAS J M. Hydroconversion of n-dodecane over Pt/SAPO-11 catalyst[J]. Appl Catal A:Gen, 1998, 170(1):139-144. doi: 10.1016/S0926-860X(98)00036-2
    [34] MARTENS J A, VANBUTSELE G, JACOBS P A, DENAYER J, OCAKOGLU R, BARON G, MUÑOZ ARROYO J A, THYBAUT J, MARIN G B. Evidences for pore mouth and key-lock catalysis in hydroisomerization of long n-alkanes over 10-ring tubular pore bifunctional zeolites[J]. Catal Today, 2001, 65(2):111-116.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  28
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-06
  • 修回日期:  2018-04-02
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-06-10

目录

    /

    返回文章
    返回