留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Selective oxidation of cyclohexane over Co-APO-5:Effects of solvent and modification method on the catalytic performance

JING Bu-qin LI Jun-fen QIN Zhang-feng

荆补琴, 李俊汾, 秦张峰. Co-APO-5分子筛催化的环己烷选择氧化:溶剂和改性方法对其催化性能的影响[J]. 燃料化学学报(中英文), 2016, 44(10): 1249-1258.
引用本文: 荆补琴, 李俊汾, 秦张峰. Co-APO-5分子筛催化的环己烷选择氧化:溶剂和改性方法对其催化性能的影响[J]. 燃料化学学报(中英文), 2016, 44(10): 1249-1258.
JING Bu-qin, LI Jun-fen, QIN Zhang-feng. Selective oxidation of cyclohexane over Co-APO-5:Effects of solvent and modification method on the catalytic performance[J]. Journal of Fuel Chemistry and Technology, 2016, 44(10): 1249-1258.
Citation: JING Bu-qin, LI Jun-fen, QIN Zhang-feng. Selective oxidation of cyclohexane over Co-APO-5:Effects of solvent and modification method on the catalytic performance[J]. Journal of Fuel Chemistry and Technology, 2016, 44(10): 1249-1258.

Co-APO-5分子筛催化的环己烷选择氧化:溶剂和改性方法对其催化性能的影响

基金项目: 

国家自然科学基金 21403268,21603254

山西省自然科学基金 201601D202014,2015021003

CAS/SAFEA创新团队的国际合作项目 

详细信息
  • 中图分类号: O643.32

Selective oxidation of cyclohexane over Co-APO-5:Effects of solvent and modification method on the catalytic performance

Funds: 

国家自然科学基金 21403268,21603254

山西省自然科学基金 201601D202014,2015021003

CAS/SAFEA创新团队的国际合作项目 

More Information
  • 摘要: 通过合成改性制备了系列Co-APO-5分子筛催化剂,用于环己烷选择氧化,研究了溶剂和改性方法对其催化性能的影响。结果表明,含有π键的极性溶剂对环己烷选择氧化反应有利,环己烷转化率随着π键极性的增加而提高。引入Si和F降低了Co-APO-5分子筛骨架中四配位钴的含量;引入F后Co-APO-5分子筛的结晶度有所提高,而引入Si则能改善Co物种的氧化和还原性,提升其催化反应活性。同时,Co-APO-5的催化活性与其骨架中四配位Co(Ⅱ)的含量相关,说明骨架Co(Ⅱ)是环己烷选择氧化的催化活性中心。
  • Figure  1  XRD patterns of various calcined Co-APO-5 molecular sieves

    a: Co-APO-5(23) ; b: Co-APO-5(11.5) ; c: Co-APO-5(7.3) ; d: Co-APSO-5(7.3) ; e: Co-APO-5(7.3)-F; f: Co-APO-5(23)-HAc

    Figure  2  Pore distribution of various Co-APO-5 molecular sieves determined by DFT method from nitrogen sorption

    Figure  3  SEM images of various Co-APO-5 molecular sieves

    (a): Co-APO-5(23) ; (b): Co-APO-5(7.3)-F; (c): Co-APSO-5(7.3) ; (d): Co-APO-5(23)-HAcalt

    Figure  4  DR UV-vis spectra of various Co-APO-5 molecular sieves

    a: Co-APO-5(11.5) ; b: Co-APO-5(7.3) ; c: Co-APO-5(23) ; d: Co-APSO-5(7.3) ; e: Co-APO-5(23)-HAc; f: Co-APO-5(7.3)-F; g: Co-APO-5(23)-F/HAc

    Figure  5  H2-TPR profiles of various Co-APO-5 molecular sieves

    a: Co-APSO-5(7.3) ; b: Co-APO-5(7.3) ; c: Co-APO-5(11.5) ; d: Co-APO-5(23) ; e: Co-APO-5(7.3)-F

    Figure  6  NH3-TPD profiles of various Co-APO-5 molecular sieves

    a: Co-APO-5(23) ; b: Co-APO-5(23)-HAc; c: Co-APO-5(7.3) ; d: Co-APO-5(7.3)-F; e: Co-APSO-5(7.3)

    Figure  7  Cyclohexane conversion versus solvent polarity (a) and solvent solubility (b) for the oxidation of cyclohexane over Co-APO-5(23) in the presence of various solvents

    a: none; b: acetic acid; c: ethyl acetate; d: acetonitrile; e: acetone; f: methyl ethyl ketone; g: nitrobenzene; h: dimethyl sulfoxide; i: methanol; j: benzene; k: carbon tetrachloride

    Figure  8  Adsorption isotherms of cyclohexane on various Co-APO-5 molecular sieves at 25 ℃

    Figure  9  Adsorption isotherms of ethyl acetate on various Co-APO-5 molecular sieves

    Figure  10  Relationship between the framework (a) and extra framework Co content (b) in the Co-APO-5 molecular sieves and their catalytic activity

    a: Co-APO-5(23) ; b: Co-APO-5(11.5) ; c: Co-APO-5(7.3) ; d: Co-APO-5(23)-HAc; e: Co-APO-5(23)-F/HAc; f: Co-APSO-5(7.3) ; g: Co-APO-5(7.3)-F

    Table  1  Relative crystallinity (XRD), surface area (nitrogen sorption) and elemental content (ICP-AES) of various calcined Co-APO-5 molecular sieves

    SampleCo in gel w/%Surface area A/(m2·g-1)Crystallinity /%Elemental contents w/%Al/Co(mol ratio)(Al+Co)/P (mol ratio)
    total (BET)micro (t-plot)AlCoP
    Co-APO-5(23) 1.963042581000.4830.0220.49622.01.02
    Co-APO-5(11.5) 4.10294258890.4610.0450.49310.21.03
    Co-APO-5(7.3) 4.82273236810.4410.0530.5058.30.98
    Co-APSO-5(7.3) 4.54168138680.4300.0500.4788.7-
    Co-APO-5(7.3)-F4.65243220930.4690.0510.4819.21.08
    Co-APO-5(23)-HAc2.00264212970.4900.0220.48822.41.05
    Co-APO-5(23)-F/HAc1.88-0.4860.0200.49424.31.02
    note: Si content in Co-APSO-5(7.3) is 1.83%
    下载: 导出CSV

    Table  2  Oxidation of cyclohexane over Co-APO-5(23) in the presence of various solventsa

    SolventCyclohexane conversion x/%Product selectivity s/%
    cyclohexanonecyclohexanolothers b
    None5.276.15.218.7
    Acetic acid (HAc) c58.571.625.13.3
    n-butyric acid18.782.313.24.5
    Ethyl acetate19.882.015.82.2
    Acetonitrile43.781.015.93.1
    Acetone20.178.619.32.1
    Methyl ethyl ketone (MEK)27.284.013.62.4
    Nitrobenzene19.088.59.71.8
    HAc + MEK (no TBHP) c, d30.074.623.22.2
    Dimethyl sulfoxide0.0---
    Methanol0.510000
    t-butanol11.287.79.82.5
    Benzene0.0---
    o-dichlorobenzene5.785.310.04.7
    p-dichlorobenzene9.483.712.14.2
    Carbon tetrachloride2.010000
    note: a reaction conditions: 50 mg Co-APO-5(23) , 0.5 g cyclohexane (containing 0.1% TBHP), 2.5 mL solvent, 120 ℃, 1.5 MPa O2, 12 h; b others include mainly diacids; c in the presence of HAC, the selectivity to cyclohexanol includes that to cyclohexyl acetate; d 2.5 mL HAc + 1.2 mmol MEK, without TBHP
    下载: 导出CSV

    Table  3  Oxidation of cyclohexane over various Co-APO-5 molecular sieves with different Al/Co mol ratios or modified by different methodsa

    CatalystCyclohexane conversion x/%Product selectivity s/%
    cyclohexanonecyclohexanolothersb
    Co-APO-5(23) 19.882.015.82.2
    Co-APO-5(11.5) 27.281.911.36.8
    Co-APO-5(7.3) 24.881.39.49.3
    Co-APSO-5(7.3) 27.581.48.110.5
    Co-APO-5(7.3)-F23.081.79.78.6
    Co-APO-5(23)-HAc18.382.515.91.6
    Co-APO-5(23)-F/HAc17.182.416.11.5
    note: a reaction conditions: 50 mg catalyst, 0.5 g cyclohexane (containing 0.1% TBHP), 2.5 mL ethyl acetate, 120 ℃, 1.5 MPa O2, 12 h; b others include mainly diacids
    下载: 导出CSV
  • [1] DUGAL M, SANKAR G, RAJA R, THOMAS J M.Designing a heterogeneous catalyst for the production of aipic acid by aerial oxidation of cyclohexane[J].Angew Chem Int Ed, 2000, 9(3):310-2313. doi: 10.1002/1521-3773(20000703)39:13%3C2310::AID-ANIE2310%3E3.0.CO;2-G/pdf
    [2] THOMAS J M, RAJA R.Innovations in oxidation catalysis leading to a sustainable society[J].Catal Today, 2006, 117(1/3):22-31.
    [3] RETCHER B, COSTA J S, TANG J K, HAGE R, GAMEZ P, REEDIJK J.HPW and supported HPW catalyzed condensation of aromatic aldehydes with aniline:Synthesis of DATPM derivatives[J].J Mol Catal A:Chem, 2008, 286(1/2):21-30.
    [4] ZOU G Q, ZHONG W Z, XU Q, XIAO J F, LIU C, LI Y Q, MAO L Q, KIRK S, YIN D L.Oxidation of cyclohexane to adipic acid catalyzed by Mn-doped titanosilicate with hollow structure[J].Catal Commun, 2015, 58:46-52. doi: 10.1016/j.catcom.2014.08.026
    [5] HARTMAN M, KEVAN L.Transition-metal ions in aluminophosphate and silicoaluminophosphate molecular sieves:Location, interaction with adsorbates and catalytic properties[J].Chem Rev, 1999, 99(3):635-664. doi: 10.1021/cr9600971
    [6] RAJA R, THOMAS J M, XU M, HARRIS K D M, GREENHILL HOOPER M, QUILL K.Highly efficient one-step conversion of cyclohexane to adipic acid using single-site heterogeneous catalysts[J].Chem Commun, 2006, 4:448-450.
    [7] RAJA R, SANKAR G, THOMAS J M.Powerful redox molecular sieve catalysts for the selective oxidation of cyclohexane in air thomas[J].J Am Chem Soc, 1999, 121(50):11926-11927. doi: 10.1021/ja9935052
    [8] CHEN J D, SHELDON R A.Selective oxidation of hydrocarbons with O2 over chromium aluminophosphate-5 molecular sieve[J].J Catal, 1995, 153(1):1-8. doi: 10.1006/jcat.1995.1101
    [9] MODEN B, ZHAN B Z, DAKKA J, SANTIESTEBAN J G, IGLESIA E.Kinetics and mechanism of cyclohexane oxidation on MnAPO-5 catalysts[J].J Catal, 2006, 239(2):390-401. doi: 10.1016/j.jcat.2006.02.006
    [10] ZHANG R Z, QIN Z F, DONG M, WANG G F, WANG J G.Selective oxidation of cyclohexane in supercritical carbon dioxide over CoAPO-5 molecular sieves[J].Catal Today, 2005, 110(3/4):351-356.
    [11] ZHOU L P, LU T L, XU J L, CHEN M Z, ZHANG C F, CHEN C, YANG X M, XU J.Synthesis of hierarchical MeAPO-5 molecular sieves-Catalysts for the oxidation of hydrocarbons with efficient mass transport[J].Microporous Mesoporous Mater, 2012, 161:76-83. doi: 10.1016/j.micromeso.2012.04.058
    [12] LI L, LI H, JIN C, WANG X C, JI W J, PAN Y, VAN DER KNAAP T, VAN DER ROLAND S, AU C T.Surface cobalt silicate and CoOx cluster anchored to SBA-15:Highly efficient for cyclohexane partial ocidation[J].Catal Lett, 2010, 136(1):20-27.
    [13] SCHUCHARDT U, CARDOSO D, SERCHELI R, PERIRA R, CRUZ R S DA, GUERRIRO M C, MANDELLI D, SPINACE E V, PIRES E L.Cyclohexane oxidation continues to be a challenge[J].Appl Catal A:Gen, 2001, 211(1):1-17. doi: 10.1016/S0926-860X(01)00472-0
    [14] CONCEPCION P, CORMA A, LOPEZ NIETO J M, PEREZ PARIENTE J.Selective oxidation of hydrocarbons on V-and/or Co-containing aluminophosphate (MeAPO-5) using molecular oxygen[J].Appl Catal A:Gen, 1996, 143(1):17-28. doi: 10.1016/0926-860X(96)00068-3
    [15] ZHOU L P, XU J, CHEN C, WANG F, LI X Q.Synthesis of Fe, Co, and Mn substituted AlPO-5 molecular sieves and their catalytic activities in the selective oxidation of cyclohexane[J].J Porous Mater, 2008, 15(1):7-12. doi: 10.1007/s10934-006-9045-7
    [16] ŠŠPONER J, ŬEJKA J, DEDECEK J, WICHTERLOVA B.Coordination and properties of cobalt in the molecular sieves CoAPO-5 and-11[J].Microporous Mesoporous Mater, 2000, 37(1/2):117-127.
    [17] DONG M, WANG G F, QIN Z F, WANG J G, LIU T, YUAN S P, JIAO H J.A comparative investigation of Co2+ and Mn2+ incorporation into aluminophosphates by in situ XAS and DFT computation[J].J Phys Chem A, 2007, 111(8):1515-1522. doi: 10.1021/jp066408l
    [18] MASTERS A F, BEATTIE J K, ROA A L.Synthesis of a CrCoAPO-5(AFI) molecular sieve and its activity in cyclohexane oxidation in the liquid phase[J].Catal Lett, 2001, 75(3):159-162.
    [19] WECKHUYSEN B M, RAO RAMACHANDRA R, MARTENS J A, SCHOONHEYDT R A.Transition metal ions in microporous crystalline aluminophosphates:Isomorphous Substitution[J].Eur J Inorg Chem, 1999, 1999(4):565-577. doi: 10.1002/(ISSN)1099-0682
    [20] THOMSON S, LUCA V, HOWE R.Framework Co (Ⅱ) in CoAPO-5[J].Phys Chem Chem Phys, 1999, 1(1):615-619.
    [21] JHUNG S H, HWANG Y K, CHANG J S, PARK S E.Effect of acidity and anions on synthesis of AFI molecular sieves in wide pH range of 3-10[J].Microporous Mesoporous Mater, 2004, 67(2/3):151-157.
    [22] MODEN B, OLIVIERO L, DAKKA J, SANTIESTEBAN J G, IGLESIA E.Structural and functional characterization of redox Mn and Co sites in AlPO materials and their role in alkane oxidation catalysis[J].J Phys Chem B, 2004, 108(18):5552-5563. doi: 10.1021/jp037257e
    [23] ROQUE-MALHERBE R, LOPEZ-CORDERO R, GONZALES-MORALES J A, OFIATE-MARTINEZ J, CARRERAS-GRAEIAL M.A comparative study of MeAPO molecular sieves with AFI structure type[J].Zeolites, 1993, 13(6):481-484. doi: 10.1016/0144-2449(93)90124-L
    [24] OKAMOTO M, LUO L, LABINGER J A, DAVIS M E.Oxydehydrogenation of propane over vanadyl ion-containing VAPO-5 and CoAPO-5[J].J Catal, 2000, 192(1):128-136. doi: 10.1006/jcat.2000.2840
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  35
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-19
  • 修回日期:  2016-07-28
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-10-10

目录

    /

    返回文章
    返回