留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预热燃烧模式下半焦NO排放和燃尽特性实验研究

吕钊敏 熊小鹤 于世林 谭厚章 向柏祥 黄军

吕钊敏, 熊小鹤, 于世林, 谭厚章, 向柏祥, 黄军. 预热燃烧模式下半焦NO排放和燃尽特性实验研究[J]. 燃料化学学报(中英文), 2020, 48(5): 543-550.
引用本文: 吕钊敏, 熊小鹤, 于世林, 谭厚章, 向柏祥, 黄军. 预热燃烧模式下半焦NO排放和燃尽特性实验研究[J]. 燃料化学学报(中英文), 2020, 48(5): 543-550.
Lü Zhao-min, XIONG Xiao-he, YU Shi-lin, TAN Hou-zhang, XIANG Bai-xiang, HUANG Jun. Experimental study on NO emission and burnout characteristics during semi-coke preheating combustion[J]. Journal of Fuel Chemistry and Technology, 2020, 48(5): 543-550.
Citation: Lü Zhao-min, XIONG Xiao-he, YU Shi-lin, TAN Hou-zhang, XIANG Bai-xiang, HUANG Jun. Experimental study on NO emission and burnout characteristics during semi-coke preheating combustion[J]. Journal of Fuel Chemistry and Technology, 2020, 48(5): 543-550.

预热燃烧模式下半焦NO排放和燃尽特性实验研究

基金项目: 

国家重点研发计划 2018YFB0604203

详细信息
  • 中图分类号: TK0

Experimental study on NO emission and burnout characteristics during semi-coke preheating combustion

Funds: 

the National Key Research and Development Program of China 2018YFB0604203

More Information
  • 摘要: 为探究更高预热温度下(>1000 ℃)半焦预热燃烧工艺的降氮潜力,在两段电炉串联组成的沉降炉系统上考察了预热温度(600-1400 ℃)、燃烧温度(1200-1400 ℃)和过量空气系数(α=0.6-1.4)对半焦燃烧NO释放和燃尽的影响。结果表明,进一步提高预热温度(>1000 ℃)能够同时降低NO排放和提高燃尽率,并且富燃料工况下,预热温度升高带来的NO降低幅度比贫燃料工况下降低幅度大,预热温度从800 ℃升高至1400 ℃时,NO降幅最大可达74%(α=0.6),明显高于贫燃料条件下NO降幅20.6%(α=1.4)。但是,富燃料工况下,预热温度升高带来的飞灰含碳量降幅比贫燃料工况下降低幅度小,贫燃料条件下飞灰含碳量最大降幅为26.8%(α=1.4),高于富燃料条件下降幅15.95%(α=0.6)。对于燃烧温度对半焦燃烧NO释放的影响,发现存在一临界过量空气系数α=1,当过量空气系数高于该临界值时,随燃烧温度提高,NO排放量增加,当过量空气系数低于该临界值时,随燃烧温度的提高,NO排放量减小。
  • 图  1  实验用焦粒径分布

    Figure  1  Particle size distribution ofsemi-coke used in experiments

    图  2  实验台示意图

    Figure  2  Schematic diagram of the experimental equipment

    图  3  某工况下NO、CO、O2、SO2值随时间的变化

    Figure  3  Changes of NO, CO, O2 and SO2 values with time under certain conditions

    preheating temperature: 1000 ℃; combustion temperature: 1200 ℃

    图  4  预热温度和过量空气系数对NO排放的影响

    Figure  4  Influence of preheating temperature and excess air coefficient on NO emission

    combustion temperature: 1200 ℃

    图  5  600与800 ℃下, 高温石炭焦反应活性差异

    Figure  5  Difference in reactivity of high temperature carboniferous coke at 600 and 800 ℃

    (experimental process: firstly, the coke was heated to the set temperature in the N2 atmosphere and maintained at that temperature for 30 min, and then the nitrogen atmosphere was changed to the air atmosphere for 30 min)

    图  6  预热温度和过量空气系数对飞灰含碳量的影响

    Figure  6  Influence of preheating temperature and excess air coefficient on carbon content of fly ash

    combustion temperature: 1200 ℃

    图  7  燃烧温度和过量空气系数对NO排放的影响

    Figure  7  Effects of combustion temperature and excess air coefficient on NO emission

    图  8  燃烧温度和过量空气系数对飞灰含碳量的影响

    Figure  8  Effects of combustion temperature and excess air coefficient on carbon content of fly ash

    表  1  石炭煤、石炭焦的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of carboniferous coal and semi-coke

    Proximate analysis w/% Ultimate analysis wad/%
    Mad Aad Vdaf FCad C H O N S
    Carboniferous coal 1.49 29.60 33.90 45.60 54.90 3.26 9.20 1.12 0.46
    Semi-coke 0.71 39.49 7.29 55.44 51.85 1.73 5.47 1.11 0.35
    下载: 导出CSV
  • [1] 张金刚, 孙志刚, 郭强, 王兴军, 于广锁, 刘海峰, 王辅臣.神府煤热解的结构变化及煤焦加氢反应性研究[J].燃料化学学报, 2017, 45(2):129-137. doi: 10.3969/j.issn.0253-2409.2017.02.001

    ZHANG Jin-gang, SUN Zhi-gang, GUO Qiang, WANG Xing-jun, YU Guang-suo, LIU Hai-feng, WANG Fu-chen. Structural changes of Shenfu coal pyrolysis and the reactivity of coal char hydrogenation[J]. J Fuel Chem Technol, 2017, 45(2):129-137. doi: 10.3969/j.issn.0253-2409.2017.02.001
    [2] 潘生杰, 陈建玉, 范飞, 李鹏飞.低阶煤分质利用转化路线的现状分析及展望[J].洁净煤技术, 2017, 23(5):7-12. doi: 10.13226/j.issn.1006-6772.2017.05.002

    PAN Sheng-jie, CHEN Jian-yu, FAN Fei, LI Peng-fei. Status analysis and prospect of the conversion path of low-rank coal mass utilization[J]. Clean Coal Technol, 2017, 23(5):7-12. doi: 10.13226/j.issn.1006-6772.2017.05.002
    [3] SONG Y H, POHL J H, BEÉR J M, SAROFIM A F. Nitric oxide formation during pulverized coal combustion[J]. Combust Sci Technol, 1982, 28(1/2):31-40. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC0212629879/
    [4] YANG Y, LU X, WANG Q. Investigation on the co-combustion of low calorific oil shale and its semi-coke by using thermogravimetric analysis[J]. Energy Convers Manage, 2017, 136:99-107. doi: 10.1016/j.enconman.2017.01.006
    [5] 刘家利, 郭孟狮, 李炎. 135 MW机组锅炉掺烧半焦试验及经济性分析[J].洁净煤技术, 2017, 23(2):86-91. http://www.cnki.com.cn/Article/CJFDTOTAL-JJMS201702017.htm

    LIU Jia-li, GUO Meng-shi, LI Yan. Test and economic analysis of 135 MW unit boiler mixed with semi-coke[J]. Clean Coal Technol, 2017, 23(2):86-91. http://www.cnki.com.cn/Article/CJFDTOTAL-JJMS201702017.htm
    [6] 杨忠灿, 王志超, 李炎, 贾晓艳.电站煤粉锅炉掺烧兰炭试验研究[J].锅炉技术, 2017, 48(3):31-36. doi: 10.3969/j.issn.1672-4763.2017.03.007

    YANG Zhong-can, WANG Zhi-chao, LI Yan, JIA Xiao-yan. Experimental study on coal-fired pulverized coal fired boiler mixed with blue charcoal[J]. Boiler Technol, 2017, 48(3):31-36. doi: 10.3969/j.issn.1672-4763.2017.03.007
    [7] 黎贤达. 300MW锅炉半焦煤粉掺混的燃烧过程及NOx排放的数值模拟[D].哈尔滨: 哈尔滨工业大学, 2019. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&dbname=CMFD202001&filename=1019690631.nh&v=MTEyOTViUElSOGVYMUx1eFlTN0RoMVQzcVRyV00xRnJDVVI3cWZZZWRxRnl6bFZidlBWRjI2RjdXeEh0ZlBycEU=

    LI Xian-da. Numerical simulation of combustion process and NOx emissions of 300MW boiler semi-coking coal powder blending[D]. Harbin: Harbin Institute of Technology, 2019. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&dbname=CMFD202001&filename=1019690631.nh&v=MTEyOTViUElSOGVYMUx1eFlTN0RoMVQzcVRyV00xRnJDVVI3cWZZZWRxRnl6bFZidlBWRjI2RjdXeEh0ZlBycEU=
    [8] 李慧, 杨石, 周建明.半焦空气分级燃烧降低NOx排放的实验研究[J].洁净煤技术.

    LI Hui, YANG Shi, ZHOU Jian-ming. Experimental study on semi-coke air staged combustion to reduce NOx emissions[J]. Clean Coal Technol.
    [9] REN Q, BAO S. Combustion characteristics of ultrafine gasified semi-char in circulating fluidized bed[J]. Can J Chem Eng, 2016, 94(9):1676-1682. doi: 10.1002/cjce.22562
    [10] YAO Y, ZHU J G, LU Q G. Experimental study on nitrogen transformation in combustion of pulverized semi-coke preheated in a circulating fluidized bed[J]. Energy Fuels, 2015, 29(6):3985-3991. doi: 10.1021/acs.energyfuels.5b00791
    [11] 巩志强.低阶煤热解半焦的燃烧特性和NOx排放特性试验研究[D].北京: 中国科学院研究生院(工程热物理研究所), 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3107155

    GONG Zhi-qiang. Experimental study on combustion characteristics and NOx emission characteristics of low-rank coal pyrolysis semi-coke[D]. Beijing: Graduate School of Chinese Academy of Sciences(Institute of Engineering Thermophysics), 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3107155
    [12] 么遥.细粉半焦预热燃烧及NOx生成特性实验研究[D].北京: 中国科学院研究生院(工程热物理研究所), 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3107158

    YAO Yao. Experimental study on preheating combustion of fine powder semi-coke and NOx formation characteristics[D]. Beijing: Graduate School of the Chinese Academy of Sciences(Institute of Engineering Thermophysics), 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3107158
    [13] RABOVITSER J, BRYAN B, KNIGHT R, NESTER S, WOHADLO S, TUMANOVSKY A G, TOLCHINSKY E N, VERBOVETSKY E H, LISAUSKAS R, BEITTEL R. Development and testing of a novel coal preheating technology for NOx reduction from pulverized coal-fired boilers[J]. Gas, 2003, 1(2):4. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC029566011
    [14] BRYAN B, NESTER S, RABOVITSER J, WOHADLO S. Methane de-NOx for Utility PC Boilers[R]. Des Plaines: Inst Gas Technol, 2005. 10.2172/834746
    [15] GLARBORG P, JENSEN A, JOHNSSON J E. Fuel nitrogen conversion in solid fuel fired systems[J]. Prog Energy Combust Sci, 2003, 29(2):89-113. doi: 10.1016/S0360-1285(02)00031-X
    [16] WU Z, OHTSUKA Y. Nitrogen distribution in a fixed bed pyrolysis of coals with different ranks:Formation and source of N2[J]. Energy Fuels, 1997, 11(2):477-482. doi: 10.1021/ef9601226
    [17] KAMBARA S, TAKARADA T, YAMAMOTO Y, KATO K. Relation between functional forms of coal nitrogen and formation of nitrogen oxide(NOx) precursors during rapid pyrolysis[J]. Energy Fuels, 1993, 7(6):1013-1020. doi: 10.1021/ef00042a045
    [18] 熊伯春, 杨卫娟, 王智化, 黄镇宇, 刘建忠, 岑可法.煤的超高温热解与气化特性的热重实验研究[J].煤炭转化, 2016, 39(4):15-20. doi: 10.3969/j.issn.1004-4248.2016.04.004

    XIONG Bo-chun, YANG Wei-juan, WANG Zhi-hua, HUANG Zhen-yu, LIU Jian-zhong, CEN Ke-fa. Thermogravimetric experimental study on ultrahigh temperature pyrolysis and gasification characteristics of coal[J]. Coal Convers, 2016, 39(4):15-20. doi: 10.3969/j.issn.1004-4248.2016.04.004
    [19] NAOTO, TSUBOUCHI. Formation of molecular nitrogen and hydrogen sulfide during high-temperature pyrolysis of coals[J]. Asia-Pac J Chem Eng, 2015, 10:154-162. doi: 10.1002/apj.1858
    [20] TANIGUCHI M, KAMIKAWA Y, TATSUMI T, YAMAMOTO K. Staged combustion properties for pulverized coals at high temperature[J]. Combust Flame, 2011, 158(11):2261-2271. doi: 10.1016/j.combustflame.2011.04.005
    [21] SONG Y H, BEER J M, SAROFIM A F. Oxidation and devolatilization of nitrogen in coal char[J]. Combust Sci Technol, 1982, 28(5/6):177-183. doi: 10.1080-00102208208952554/
    [22] ZENG C, WU H, HAYASHI J I, LI C Z. Effects of thermal pretreatment in helium on the pyrolysis behaviour of Loy Yang brown coal[J]. Fuel, 2005, 84(12/13):1586-1592. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=98723441f68aadf796337e9325fc8dc8
    [23] JENKINS R G, NANDI S P, WALKER JR P L. Reactivity of heat-treated coals in air at 500 C[J]. Fuel, 1973, 52(4):288-293. doi: 10.1016/0016-2361(73)90059-8
    [24] KHAN MR. Significance of char active surface area for appraising the reactivity of low-and high-temperature chars[J]. Fuel, 1987, 66(12):1626-1634. doi: 10.1016/0016-2361(87)90353-X
    [25] VAN HEEK K, MÜHLEN H J. Effect of coal and char properties on gasification[J]. Fuel Process Technol, 1987, 15:113-133. doi: 10.1016/0378-3820(87)90039-7
    [26] LIU C, HUI S, PAN S, ZOU H, ZHANG G, WANG D. Experimental investigation on NOx reduction potential of gas-fired coal preheating technology[J]. Energy Fuels, 2014, 28(9):6089-6097. doi: 10.1021/ef501175v
    [27] SPLIETHOFF H, GREUL U, RÜDIGER H, HEIN K R. Basic effects on NOx emissions in air staging and reburning at a bench-scale test facility[J]. Fuel 1996, 75(5):560-564. doi: 10.1016/0016-2361(95)00281-2
    [28] TANIGUCHI M, KAMIKAWA Y, OKAZAKI T, YAMAMOTO K, ORITA H J C. A role of hydrocarbon reaction for NOx formation and reduction in fuel-rich pulverized coal combustion[J]. Combust Flame, 2010, 157(8):1456-1466. doi: 10.1016/j.combustflame.2010.04.009
    [29] BAI W, HAO L, LEI D, HU L, CHE D. Air-staged combustion characteristics of pulverized coal under high temperature and strong reducing atmosphere conditions[J]. Energy Fuels, 2014, 28(3):1820-1828. doi: 10.1021/ef402305h
    [30] TAKAGI H, ISODA T, KUSAKABE K, MOROOKA S. Effects of coal structures on denitrogenation during flash pyrolysis[J]. Energy fuels, 1999, 13(4):934-940. doi: 10.1021/ef990010p
    [31] JENSEN L S, JANNERUP H E, GLARBORG P, JENSEN A, DAM-JOHANSEN K. Experimental investigation of NO from pulverized char combustion[J]. Proc Combust Inst, 2000, 28(2):2271-2278. doi: 10.1016/S0082-0784(00)80637-2
    [32] MOLINA A, EDDINGS E, PERSHING D, SAROFIM A. Char nitrogen conversion:Implications to emissions from coal-fired utility boilers[J]. Prog Energy Combust Sci, 2000, 26(4/6):507-531. doi: 10.1016/S0360-1285(00)00010-1
    [33] 陈萍, 顾明言, 陈金超, 陈雪, 卢坤.中度气化煤焦异相还原NO机理[J].燃料化学学报, 2018, 46(8):918-924. doi: 10.3969/j.issn.0253-2409.2018.08.003

    CHEN Ping, GU Ming-yan, CHEN Jin-chao, CHEN Xue, LU Kun. NO mechanism of heterogeneous reduction of moderately gasified coal char[J]. J Fuel Chem Technol, 2018, 46(8):918-924. doi: 10.3969/j.issn.0253-2409.2018.08.003
    [34] AIHARA T, MATSUOKA K, KYOTANI T, TOMITA A. Mechanism of N2 formation during coal char oxidation[J]. Proc Combust Inst, 2013, 28(2):2189-2195. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC028008572
    [35] ASHMAN P J, HAYNES B S, BUCKLEY A N, NELSON P F. The fate of char-nitrogen in low-temperature oxidation[J]. Symp (Int) Combust, 1998, 27(2):3069-3075. doi: 10.1016/S0082-0784(98)80168-9
    [36] THOMAS K M. The release of nitrogen oxides during char combustion[J]. Fuel, 1997, 76(6):457-473. doi: 10.1016/S0016-2361(97)00008-2
    [37] AARNA I, SUUBERG E M. A review of the kinetics of the nitric oxide-carbon reaction[J]. Fuel, 1997, 76(6):475-491. doi: 10.1016/S0016-2361(96)00212-8
    [38] CHAN L, SAROFIM A, BEER J. Kinetics of the NO carbon reaction at fluidized bed combustor conditions[J]. Combust Flame, 1983, 52:37-45. doi: 10.1016/0010-2180(83)90119-0
    [39] ALZUETA M U, GLARBORG P, DAM-JOHANSEN K. Low temperature interactions between hydrocarbons and nitric oxide:An experimental study[J]. Combust Flame, 1997, 109(1/2):25-36. doi: 10.1016-S0010-2180(96)00146-0/
    [40] FAN W, LI Y, GUO Q, CHEN C, WANG Y. Coal-nitrogen release and NOx evolution in the oxidant-staged combustion of coal[J]. Energy, 2017, 125:417-426. doi: 10.1016/j.energy.2017.02.130
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  147
  • HTML全文浏览量:  38
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-31
  • 修回日期:  2020-05-05
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-05-10

目录

    /

    返回文章
    返回