留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多级孔Fe-HBeta分子筛的合成及其催化性能探究

田韧 王诗瑶 连晨帅 吴旭 安霞 谢鲜梅

田韧, 王诗瑶, 连晨帅, 吴旭, 安霞, 谢鲜梅. 多级孔Fe-HBeta分子筛的合成及其催化性能探究[J]. 燃料化学学报(中英文), 2019, 47(12): 1476-1485.
引用本文: 田韧, 王诗瑶, 连晨帅, 吴旭, 安霞, 谢鲜梅. 多级孔Fe-HBeta分子筛的合成及其催化性能探究[J]. 燃料化学学报(中英文), 2019, 47(12): 1476-1485.
TIAN Ren, WANG Shi-yao, LIAN Chen-shuai, WU Xu, AN Xia, XIE Xian-mei. Synthesis of the hierarchical Fe-substituted porous HBeta zeolite and the exploration of its catalytic performance[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1476-1485.
Citation: TIAN Ren, WANG Shi-yao, LIAN Chen-shuai, WU Xu, AN Xia, XIE Xian-mei. Synthesis of the hierarchical Fe-substituted porous HBeta zeolite and the exploration of its catalytic performance[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1476-1485.

多级孔Fe-HBeta分子筛的合成及其催化性能探究

基金项目: 

国家自然科学基金 51541210

山西省自然科学基金 201701D121042

详细信息
  • 中图分类号: O643

Synthesis of the hierarchical Fe-substituted porous HBeta zeolite and the exploration of its catalytic performance

Funds: 

the National Natural Science Foundation of China 51541210

Natural Science Foundation of Shanxi Province 201701D121042

More Information
  • 摘要: 采用软模板法一步合成了一系列铁同晶取代的多级孔Beta分子筛(nFe-HBeta,n=Fe/Al),并通过等体积浸渍法制备出系列Ni基催化剂(10Ni/nFe-HBeta)。结果表明,系列nFe-HBeta均为结晶度高、孔道结构丰富的片状结构。异质铁原子的引入在降低介孔相有序度的同时,促使沸石颗粒粒径下降,中强酸性位点数量显著减少。对于10Ni/nFe-HBeta催化剂而言,骨架铁与NiO之间存在协同作用,可增强活性组分Ni与载体间的作用力,提高活性金属Ni的分散度,降低NiO颗粒粒径。在乙醇水蒸气重整催化反应中,铁元素的引入可规避酸性位以抑制乙醇脱水反应,同时加强CO和CH4的水蒸气重整反应,有效提高H2选择性。其中,10Ni/0.15Fe-HBeta催化剂在500 ℃时,H2选择性高达72.15%,C2H5OH转化率为99.6%,反应12 h后的积炭量仅为4.3%。
  • 图  1  HBeta和nFe-HBeta载体焙烧前的XRD谱图

    Figure  1  XRD patterns of HBeta and nFe-HBeta supports before calcination

    图  2  HBeta和nFe-HBeta载体的N2吸附-脱附等温线

    Figure  2  N2 adsorption and desorption isotherms for HBeta and nFe-HBeta supports

    图  3  HBeta和nFe-HBeta载体的NLDFT孔径分布

    Figure  3  Pore size distribution of HBeta and nFe-HBeta supports calculated by the NLDFT method

    图  4  HBeta和nFe-HBeta载体的扫描电镜照片

    Figure  4  SEM images of the HBeta and nFe-HBeta supports

    (a): HBeta; (b): 0.1Fe-HBeta; (c): 0.15Fe-HBeta; (d): 0.2Fe-HBeta; (e): 0.3Fe-HBeta

    图  5  HBeta和nFe-HBeta载体的漫反射紫外可见光谱谱图

    Figure  5  UV-vis reflectance spectra of the HBeta and nFe-HBeta supports

    图  6  HBeta和nFe-HBeta载体的红外光谱谱图

    Figure  6  FT-IR spectra of the HBeta and nFe-HBeta supports

    图  7  HBeta和nFe-HBeta载体的NH3-TPD谱图

    Figure  7  NH3-TPD profiles of the HBeta and nFe-HBeta supports

    图  8  Ni基催化剂和0.3Fe-HBeta载体的H2-TPR谱图

    Figure  8  H2-TPR patterns of the Ni-based catalysts and 0.3Fe-HBeta support

    图  9  不同催化剂焙烧后的XRD谱图

    Figure  9  XRD patterns of the different catalysts after calcination

    图  10  不同催化剂的C2H5OH转化率

    Figure  10  C2H5OH conversion profiles of different catalysts (reaction conditions: 0.1MPa, S/C=7:3, WHSV=10.65h-1)

    图  11  不同催化剂产物的选择性分布

    Figure  11  Product selectivity distribution of different catalysts (reaction conditions: 0.1MPa, S/C=7:3, WHSV=10.65h-1)

    图  12  10Ni/HBeta和10Ni/0.15Fe-HBeta催化剂的稳定性

    Figure  12  Stability test of the 10Ni/HBeta and 10Ni/0.15Fe-HBeta catalysts (reaction conditions: 500℃, 0.1MPa, S/C=7:3, WHSV = 10.65h-1)

    图  13  10Ni/HBeta和10Ni/0.15Fe-HBeta催化剂反应后的XRD谱图

    Figure  13  XRD patterns of the 10Ni/HBeta and 10Ni/0.15Fe-HBeta catalysts after reaction

    图  14  10Ni/HBeta和10Ni/0.15Fe-HBeta催化剂反应后的TG曲线

    Figure  14  TG curves of the 10Ni/HBeta and 10Ni/0.15Fe-HBeta catalysts after reaction

    表  1  HBeta和nFe-HBeta载体的组成分析

    Table  1  Composition analysis of HBeta and nFe-HBeta supports

    Sample Fe/Ala Phase Si/Alb Fe/Alb Fe w/%c
    HBeta - BEA 8 - -
    0.1Fe-HBeta 0.1 BEA 9.24 0.098 0.57
    0.15Fe-HBeta 0.15 BEA 9.61 0.14 0.78
    0.2Fe-HBeta 0.2 BEA 10.15 0.198 1.07
    0.3Fe-HBeta 0.3 BEA 11.56 0.32 2.2
    a: in the zeolite precursor; b: obtained from the final product by EDX testing; c: obtained from the final product by AAS measurements
    下载: 导出CSV

    表  2  HBeta和nFe-HBeta载体的拓扑性质

    Table  2  Topological properties of the HBeta and nFe-HBeta supports

    Sample Surface area A/(m2·g-1) Pore volume v/(cm3·g-1) Pore width d/nm vmeso/ vtotal Ameso/ ABET
    ABET Amicro Ameso vmicro vmeso vtotal dmeso dmicro
    HBeta 582.0 365.9 216.1 0.19 0.25 0.44 3.02 0.58 0.57 0.37
    0.1Fe-HBeta 568.1 394.9 173.2 0.21 0.24 0.45 3.20 0.57 0.53 0.31
    0.15Fe-HBeta 503.4 343.9 159.5 0.17 0.21 0.38 3.08 0.58 0.55 0.32
    0.2Fe-HBeta 491.5 355.1 136.4 0.19 0.16 0.35 2.88 0.56 0.46 0.28
    0.3Fe-HBeta 431.5 302.9 128.6 0.18 0.11 0.29 2.50 0.58 0.38 0.30
    下载: 导出CSV
  • [1] LI D, ZENG L, LI X Y, WANG X, MA H Y, ASSABUMRUNGRAT S, GONG J L. Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation[J]. Appl Catal B:Environ, 2015, 176:532-541. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9cf678302b79b5c030a95d1a0b5817f0
    [2] VIZCAÍNO A J, CARRERO A, CALLES J A. Comparison of ethanol steam reforming using Co and Ni catalysts supported on SBA-15 modified by Ca and Mg[J]. Fuel Process Technol, 2016, 146:99-109. doi: 10.1016/j.fuproc.2016.02.020
    [3] 李宝茹, 殷雪梅, 吴旭, 安霞, 谢鲜梅. Ni-Fe/蒙脱土催化剂催化乙醇水蒸气重整制氢的研究[J].燃料化学学报, 2016, 44(8):993-1000. doi: 10.3969/j.issn.0253-2409.2016.08.014

    LI Bao-ru, YIN Xue-mei, WU Xu, AN Xia, XIE Xian-mei. Study on hydrogen production by steam reforming of ethanol over Ni-Fe/montmorillonite catalyst[J]. J Fuel Chem Technol, 2016, 44(8):993-1000. doi: 10.3969/j.issn.0253-2409.2016.08.014
    [4] GOICOECHEA S, KRALEVA E, SOKOLOV S, SCHNEIDER M, POHL M, KOCKMANN N, EHRICH H. Support effect on structure and performance of Co and Ni catalysts for steam reforming of acetic acid[J]. Appl Catal A:Gen, 2016, 514:182-191. doi: 10.1016/j.apcata.2015.12.025
    [5] BILAL M, JACKSON S D. Ethanol steam reforming over Pt/Al2O3 and Rh/Al2O3 catalysts:The effect of impurities on selectivity and catalyst deactivation[J]. Appl Catal A:Gen, 2017, 529:98-107. doi: 10.1016/j.apcata.2016.10.020
    [6] WANG Y J, YANG X X, WANG Y H. Catalytic performance of mesoporous MgO supported Ni catalyst in steam reforming of model compounds of biomass fermentation for hydrogen production[J]. In J Hydrogen Energy, 2016, 41(40):17846-17857. doi: 10.1016/j.ijhydene.2016.07.258
    [7] LIU B Y, ZHENG L M, ZHU Z H, LI C, XI H X, QIAN Y. Hierarchically structured Beta zeolites with intercrystal mesopores and the improved catalytic properties[J]. Appl Catal A:Gen, 2014, 470:412-419. doi: 10.1016/j.apcata.2013.11.015
    [8] LIU B Y, DUAN Q Q, LI C, ZHU Z H, XI H X, QIAN Y. Template synthesis of the hierarchically structured MFI zeolite with nanosheet frameworks and tailored structure[J]. New J Chem, 2014, 38(9):4380-4387. doi: 10.1039/C4NJ00756E
    [9] LIU H, ZHANG S, XIE S J, ZHANG W S, XIN W J, LIU S L, XU L Y. Synthesis, characterization, and catalytic performance of hierarchical ZSM-11 zeolite synthesized via dual-template route[J]. Chin J Catal, 2018, 39(1):167-180. doi: 10.1016/S1872-2067(17)62984-X
    [10] ZHANG X F, ZHANG K, ZHANG X G, FENG Y, YAO J F. Controlled synthesis of hierarchical beta zeolite through design template to enhance gas-phase beckmann rearrangement performance[J]. Microporous Mesoporous Mater, 2018, 272:202-208. doi: 10.1016/j.micromeso.2018.06.034
    [11] PARLETT C M A, AYDIN A, DURNDELL L J, FRATTINI L, ISAACS M A, LEE A F, LIU X T, OLIVI L, TROFIMOVAITE R, WILSON K, WU C F. Tailored mesoporous silica supports for Ni catalysed hydrogen production from ethanol steam reforming[J]. Catal Commun, 2017, 91:76-79. doi: 10.1016/j.catcom.2016.12.021
    [12] HOU T F, ZHANG S Y, CHEN Y D, WANG D Z, CAI W J. Hydrogen production from ethanol reforming:Catalysts and reaction mechanism[J]. Renewable Sustainable Energy Rev, 2015, 44:132-148. doi: 10.1016/j.rser.2014.12.023
    [13] WANG S Y, HE B, TIAN R, SUN C, DAI R, LI X, WU X, AN X, XIE X M. Ni-hierarchical beta zeolite catalysts were applied to ethanol steam reforming:Effect of sol gel method on loading Ni and the role of hierarchical structure[J]. Mol Catal, 2018, 453:64-73. doi: 10.1016/j.mcat.2018.04.034
    [14] KUMAR N, LINDFORS L E, BYGGNINGSBACKA R. Synthesis and characterization of H-ZSM-22, Zn-H-ZSM-22 and Ga-H-ZSM-22 zeolite catalysts and their catalytic activity in the aromatization of n-butane[J]. Appl Catal A:Gen, 1996, 139(1/2):189-199. doi: 10.1016-0926-860X(95)00327-4/
    [15] BAECK S H, LEE W Y. Skeletal isomerization of 1-butene to isobutene over Mg-ZSM-22[J]. Appl Catal A:Gen, 1997, 164(1/2):291-301. doi: 10.1016-S0926-860X(97)00180-4/
    [16] 肖质文, 何红运.双杂原子Fe-V-β沸石的合成, 表征及催化性能[J].催化学报, 2010, 31(6):705-710. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb201006019

    XIAO Zhi-wen, HE Hong-yun. Synthesis, characterization and catalytic performance of double heteroatom Fe-V-β zeolite[J]. Chin J Catal, 2010, 31(6):705-710. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb201006019
    [17] SONG S, WU G J, DAI W L, GUAN N J, LI L D. Al-free Fe-beta as a robust catalyst for selective reduction of nitric oxide by ammonia[J]. Catal Sci Technol, 2016, 6(23):8325-8335. doi: 10.1039/C6CY02124G
    [18] ZHANG Y H, GAO F, WAN H Q, WU C, KONG Y, WU X C, ZHAO B, DONG L, CHEN Y. Synthesis, characterization of bimetallic Ce-Fe-SBA-15 and its catalytic performance in the phenol hydroxylation[J]. Microporous Mesoporous Mater, 2008, 113(1/3):393-401. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=38961b498372f7abd92091b8e02eafce
    [19] SIG K Y, AHN W S. Isomorphous substitution of Fe3- in zeolite LTL[J]. Microporous Mater, 1997, 9(3/4):131-140.
    [20] INUI T, MATSUDA H, YAMASE O, NAGATA H, FUKUDA K, UKAWA T, MIYAMOTO A. Highly selective synthesis of light olefins from methanol on a novel Fe-silicate[J]. J Catal, 1986, 98(2):491-501. doi: 10.1016-0021-9517(86)90337-4/
    [21] LIU S Y, REN J, ZHU S J, ZHANG H K, LV E, XU J, LI Y F. Synthesis and characterization of the Fe-substituted ZSM-22 zeolite catalyst with high n-dodecane isomerization performance[J]. J Catal, 2015, 330:485-496. doi: 10.1016/j.jcat.2015.07.027
    [22] JIANG X, SU X F, BAI X F, LI Y Z, YANG L, ZHANG K, ZHANG Y, LIU Y, WU W. Conversion of methanol to light olefins over nanosized[Fe, Al] ZSM-5 zeolites:Influence of Fe incorporated into the framework on the acidity and catalytic performance[J]. Microporous Mesoporous Mater, 2018, 263:243-250. doi: 10.1016/j.micromeso.2017.12.029
    [23] KOEKKOEK A J J, XIN H C, YANG Q H, LI C, HENSEN E J M. Hierarchically structured Fe/ZSM-5 as catalysts for the oxidation of benzene to phenol[J]. Microporous Mesoporous Mater, 2011, 145(1/3):172-181. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a11091ac5319de922c99ac61c0d8fad5
    [24] YUE Y Y, LIU H Y, YUAN P, YU C Z, BAO X J. One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3[J]. Sci Rep-UK, 2015, 5:9270. doi: 10.1038/srep09270
    [25] LI J Q, MIAO P J, LI Z, HE T, HAN D Z, WU J L, WANG Z Q, WU J H. Hydrothermal synthesis of nanocrystalline H[Fe, Al] ZSM-5 zeolites for conversion of methanol to gasoline[J]. Energy Convers Manage, 2015, 93:259-266. doi: 10.1016/j.enconman.2015.01.031
    [26] 孙慧勇, 吴东.杂原子Fe-ZSM-5分子筛的合成及表征[J].燃料化学学报, 1999, 27(1):7-10. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGHG200510002104.htm

    SUN Hui-yong, WU Dong. Synthesis and characterization of Heteroatom Fe-ZSM-5 molecular sieve[J]. J Fuel Chem Technol, 1999, 27(1):7-10. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGHG200510002104.htm
    [27] NICHELE V, SIGNORETTO M, PINNA F, GHEDINI E, COMPAGNONI M, ROSSETTI I, CRUCIANI G, MICHELE A D. Bimetallic Ni-Cu catalysts for the low-temperature ethanol steam reforming:Importance of metal-support interactions[J]. Catal Lett, 2015, 145(2):549-558.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  121
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-09
  • 修回日期:  2019-10-25
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-12-10

目录

    /

    返回文章
    返回