留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni-Fe/蒙脱土催化剂催化乙醇水蒸气重整制氢的研究

李宝茹 殷雪梅 吴旭 安霞 谢鲜梅

李宝茹, 殷雪梅, 吴旭, 安霞, 谢鲜梅. Ni-Fe/蒙脱土催化剂催化乙醇水蒸气重整制氢的研究[J]. 燃料化学学报(中英文), 2016, 44(8): 993-1000.
引用本文: 李宝茹, 殷雪梅, 吴旭, 安霞, 谢鲜梅. Ni-Fe/蒙脱土催化剂催化乙醇水蒸气重整制氢的研究[J]. 燃料化学学报(中英文), 2016, 44(8): 993-1000.
LI Bao-ru, YIN Xue-mei, WU Xu, AN Xia, XIE Xian-mei. Montmorillonite supported Ni-Fe catalysts for hydrogen production from steam reforming of ethanol[J]. Journal of Fuel Chemistry and Technology, 2016, 44(8): 993-1000.
Citation: LI Bao-ru, YIN Xue-mei, WU Xu, AN Xia, XIE Xian-mei. Montmorillonite supported Ni-Fe catalysts for hydrogen production from steam reforming of ethanol[J]. Journal of Fuel Chemistry and Technology, 2016, 44(8): 993-1000.

Ni-Fe/蒙脱土催化剂催化乙醇水蒸气重整制氢的研究

基金项目: 

国家自然科学基金 51541210

和山西省自然科学基金资助 2013021008-4

详细信息
  • 中图分类号: TQ426

Montmorillonite supported Ni-Fe catalysts for hydrogen production from steam reforming of ethanol

More Information
  • 摘要: 采用浸渍法制备了一系列Ni-Fe/蒙脱土(MMT)催化剂,并应用于乙醇水蒸气重整制氢反应(ESR)。采用X射线衍射(XRD)、N2吸附脱附分析和H2-程序升温还原(H2-TPR)表征手段对催化剂的物理化学性质、还原性能、碳沉积等进行了研究。结果表明,Ni-Fe/MMT催化剂中,Ni、Fe高度分散在载体MMT层间及表面,而且Fe的加入降低了Ni颗粒的粒径,增强了Ni2+与载体的相互作用力。以10Ni5Fe/MMT为催化剂,在反应温度为500℃、水醇比为3:1、空速为12h-1,反应进行30h后,乙醇转化率为100%,氢气选择性仍保持72%,副产物CO和CH4含量明显降低。这是因为催化助剂Fe的引入,一方面,提高了Ni的分散度,使得ESR低温活性较好;另一方面,减小了Ni颗粒粒径,小颗粒的Ni有利于抑制甲烷的生成,并且Fe的加入加强了甲烷重整和水煤气变换反应,提高产物中氢气的选择性。
  • 图  1  Ni-Fe/MMT催化剂的XRD谱图

    Figure  1  XRD patterns of different catalysts

    a: MMT; b: 10Ni/MMT; c: 10Ni3Fe/MMT; d: 10Ni5Fe/MMT; e: 10Ni7Fe/MMT

    图  2  催化剂的N2吸附-脱附等温曲线

    Figure  2  N2 adsorption-desorption isotherms of different catalysts

    a: 10Ni/MMT; b: MMT; c: 10Ni7Fe/MMT; d: 10Ni3Fe/MMT; e: 10Ni5Fe/MMT

    图  3  催化剂的孔径分布

    Figure  3  Pore size distributions of different catalysts

    图  4  Ni/MMT和Ni-Fe/MMT催化剂的H2-TPR谱图

    Figure  4  H2-TPR profiles of different catalysts

    图  5  反应温度对10Ni/MMT和Ni-Fe/MMT催化剂乙醇转化率和产物选择性的影响

    Figure  5  Variations of the conversion of ethanol and the selectivity to the different products with reaction temperature over 10Ni/MMT and Ni-Fe/MMT catalysts

    (H2O/C2H5OH mol ratio=3:1 and LHSV=12 mL/(g·h))■: 10Ni/MMT; □: 10Ni3Fe/MMT; ▲: 10Ni5Fe/MMT; ∇: 10Ni7Fe/MMT

    图  6  10Ni/MMT和10Ni5Fe/MMT催化剂在乙醇水蒸气重整反应中的稳定性测试

    Figure  6  Stability of (a) 10Ni/MMT and (b) 10Ni5Fe/MMT catalyst (reaction at 500 ℃, H2O/C2H5OH mol ratio=3:1 and LHSV=12 mL/(g·h)

    ■: H2;
    ●: CO;
    ▲: CH4;
    ▼: CO2;
    ◀: C2H4;
    ▶: C2H4O;
    ◆: C2H5OH conversion

    图  7  10Ni/MMT和10Ni5Fe/MMT催化剂的XRD谱图

    Figure  7  XRD patterns of 10Ni/MMT and 10Ni5Fe/MMT catalysts

    图  8  反应后的10Ni/MMT和10Ni5Fe/MMT热重分析曲线

    Figure  8  TG curves of the catalysts after 30 h

    表  1  浸渍法制备的10Ni/MMT和Ni-Fe/MMT催化剂的粒径

    Table  1  Crystallite size of the 10Ni/MMT and Ni-Fe/MMT catalysts

    Catalyst2θ/(°)FWHMNiO d/nm
    10Ni/MMT43.320.3822.24
    10Ni3Fe/MMT42.900.4618.19
    10Ni5Fe/MMT42.950.6612.79
    10Ni7Fe/MMT42.750.988.60
    下载: 导出CSV

    表  2  MMT、10Ni/MMT and Ni-Fe/MMT催化剂的孔结构性质

    Table  2  Physical properties of MMT, 10Ni/MMT and Ni-Fe/MMT catalysts

    SampleBET surface area A/(m2·g-1)Pore volume v/(cm3·g-1)Pore size d/nm
    MMT23.450.065.52
    10Ni/MMT16.340.046.83
    10Ni3Fe/MMT14.720.058.65
    10Ni5Fe/MMT12.810.049.96
    10Ni7Fe/MMT9.4470.0310.04
    下载: 导出CSV
  • [1] MOMIRLAN M, VEZIROGLU T N.The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet[J].Int J Hydrogen Energy, 2005, 30(7):795-802. doi: 10.1016/j.ijhydene.2004.10.011
    [2] 郭坤, 张京京, 李浩然, 杜竹玮.微生物电解电池制氢[J].化学进展, 2010, 22(4):748-753. http://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201004025.htm

    GUO Kun, ZHANG Jing-jing, LI Hao-ran, DU Zhu-wei.Hydrogen production by microbial electrolysis cells[J].Prog Chem, 2010, 22(4):748-753. http://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201004025.htm
    [3] 温福宇, 杨金辉, 宗旭, 马艺, 徐倩, 马保军, 李灿.太阳能光催化制氢研究进展[J].化学进展, 2009, 21(11):2285-2302. http://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ200911005.htm

    WEN Fu-yu, YANG Jin-hui, ZONG Xu, MA Yi, XU Qian, MA Bao-jun, LI Can.Photocatalytic hydrogen production utilizing solar energy[J].Prog Chem, 2009, 21(11):2285-2302. http://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ200911005.htm
    [4] 李慧青, 邹吉军, 刘昌俊.等离子体法制氢的研究进展[J].化学进展, 2005, 17(1):69-77. http://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ200501007.htm

    LI Hui-qing, ZOU Ji-jun, LIU Chang-jun.Progress in hydrogen generation using plasmas[J].Prog Chem, 2005, 17(1):69-77. http://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ200501007.htm
    [5] 吴川, 张华民, 衣宝廉.化学制氢技术研究进展[J].化学进展, 2005, 17(3):423-429. http://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ200503007.htm

    WU Chuan, ZHANG Hua-min, YI Bao-lian.Recent advances in hydrogen generation with chemical methods[J].Prog Chem, 2005, 17(3):423-429. http://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ200503007.htm
    [6] 亓爱笃.甲醇氧化重整制氢过程的研究[D].大连:中国科学院大连化学物理研究所, 1999.

    QI Ai-du.Study on hydrogen for methanol oxidation reforming[D].Dalian:Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 1999.
    [7] DELUGA G A, SALGE J R, SCHMIDT L D, VERYKIOS X E.Renewable hydrogen from ethanol by auto-thermal reforming[J].Science, 2004, 303(5660):993-997. doi: 10.1126/science.1093045
    [8] CAVALLARO S, CHIODO V, FRENI S, MONDELLOA N, FRUSTERI F.Performance of Rh/Al2O3 catalyst in the steam reforming of ethanol:H2 production for MCFC[J].Appl Catal A:Gen, 2003, 249(1):119-128. doi: 10.1016/S0926-860X(03)00189-3
    [9] FRUSTERI F, FRENI S, SPADARO L, CHIODOA V, BONURAA G, DONATOA S, CAVALLARO S.H2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts[J].Catal Commun, 2004, 5(10):611-615. doi: 10.1016/j.catcom.2004.07.015
    [10] WU Y J, SANTOS J C, LI P, YU J G, CUNHA A F, RODRIGUES A E.Simplified kinetic model for steam reforming of ethanol on a Ni/Al2O3 catalyst[J].Can J Chem Eng, 2014, 92(1):116-130. doi: 10.1002/cjce.v92.1
    [11] SUN J M, KARIM A M, MEI D H, ENGELHARD M, BAO X H, WANG Y.New insights into reaction mechanisms of ethanol steam reforming on Co-ZrO2[J].App Catal B:Environ, 2015, 162:141-148. doi: 10.1016/j.apcatb.2014.06.043
    [12] NI M, LEUNG D Y C, LEUNG M K H.A review on reforming bio-ethanol for hydrogen production[J].Int J Hydrogen Energy, 2007, 32(15):3238-3247. doi: 10.1016/j.ijhydene.2007.04.038
    [13] DAVDA R R, SHABAKER J W, HUBER G W, CORTRIGHT R D, DUMESIC J A.A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts[J].App Catal B:Environ, 2005, 56(1/2):171-186.
    [14] 刘少文, 李永丹.甲烷重整制氢气的研究进展[J].武汉化工学院学报, 2005, 27(1):20-24. http://www.cnki.com.cn/Article/CJFDTOTAL-WHHG200501006.htm

    LIU Shao-wen, LI Yong-dan.Research proceeding for methane reforming for hydrogen[J].J Wuhan Inst Chem Technol, 2005, 27(1):20-24. http://www.cnki.com.cn/Article/CJFDTOTAL-WHHG200501006.htm
    [15] 陈兴权, 赵天生.甲烷二氧化碳重整催化剂的研究进展[J].宁夏石油化工, 2003, 22(1):15-17. http://www.cnki.com.cn/Article/CJFDTOTAL-NXSH200301002.htm

    CHEN Xing-quan, ZHAO Tian-sheng.Catalyst progress for CH4 reforming and CO2[J].Ningxia Pet Chem Ind, 2003, 22(1):15-17. http://www.cnki.com.cn/Article/CJFDTOTAL-NXSH200301002.htm
    [16] 张兵兵.基于蒙脱土矿物的几种生态环境材料的制备、性能及应用研究[D].内蒙古:内蒙古大学, 2013.

    ZHANG Bing-bing.Preparation, properties and applications of several eco-materials based on montmorillonite mineral[D].Inner Mongolia:Inner Mongolia University, 2013.
    [17] HU Z W, HE F H, LIU Y F, DONG C X, WU X M, ZHAO W.Effects of surfactant concentration on alkyl chain arrangements in dry and swollen organic montmorillonite[J].Appl Clay Sci, 2013, 75-76(5):134-140.
    [18] 胡正文.蒙脱土有机化及其插层质子交换膜的研究[D].大连:大连理工大学, 2013.

    HUO Zheng-wen.Modification of montmorillonite and intercalated proton exchange membrane[D].Dalian:Dalian University of Technology, 2013.
    [19] KIM Y, WEI T, STULTZ J, GOODMAN D.Dissociation of water on a flat, ordered silica surface[J].Langmuir, 2003, 19(4):1140-1142. doi: 10.1021/la020734k
    [20] KIM S H, CHUNG J H, KIM Y T, HAN J, YOON S P, NAM S W, LIM T H, LEE H I.SiO2/Ni and CeO2/Ni catalysts for single-stage water gas shift reaction[J].Int J Hydrogen Energy, 2010, 35(7):3136-3140. doi: 10.1016/j.ijhydene.2009.09.091
    [21] SING K S W, EVERETT D H, HAUL R A W, MOSCOU L, PIEROTTI R A, ROUQUEROL J, SIEMIENIEWSKA T.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J].Pure Appl Chem, 1985, 57(4):603-619.
    [22] 石秋杰, 马洪波, 彭子青, 谌伟庆, 张宁.Ni-Fe/La2O2CO3催化乙醇水蒸气重整制氢的研究[J].中国稀土学报, 2012, 30(1):21-27. doi: 10.1016/S1002-0721(10)60631-X

    SHI Qiu-jie, MA Hong-bo, PENG Zi-qing, CHEN Wei-qing, ZHANG Ning.La2O2CO3 supported Ni-Fe catalysts for hydrogen production from steam reforming of ethanol[J].J Chin Rare Earth Soc, 2012, 30(1):21-27. doi: 10.1016/S1002-0721(10)60631-X
    [23] YUAN P, FAN M, YANG D, HE H, LIU D, YUAN A, ZHU J, CHEN T.Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium[Cr (VI)]from aqueous solutions[J].J Hazard Mater, 2009, 166(2/3):821-829.
    [24] WU X S, KAWI S.Steam reforming of ethanol to H2 over Rh/Y2O3:Crucial roles of Y2O3 oxidizing ability, space velocity, and H2/C[J].Energy Environ Sci, 2010, 3:334-342. doi: 10.1039/b923978m
    [25] SÁNCHEZ E A, D'ANGELO M A, COMELLI R A.Hydrogen production from glycerol on Ni/Al2O3 catalyst[J].Int J Hydrogen Energy, 2010, 35(11):5902-5907. doi: 10.1016/j.ijhydene.2009.12.115
    [26] LEE M S, LEE J Y, LEE D W, DONG J M, LEE K Y.The effect of Zn addition into NiFe2O4catalyst for high temperature shift reaction of natural gas reformate assuming no external steam addition[J].Int J Hydrogen Energy, 2012, 37(15):11218-11226. doi: 10.1016/j.ijhydene.2012.04.130
    [27] MENG N, LEUNG D Y C, LEUNG M K H.A review on reforming bio-ethanol for hydrogen production[J].Int J Hydrogen Energy, 2007, 32(15):3238-3247. doi: 10.1016/j.ijhydene.2007.04.038
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  31
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-04
  • 修回日期:  2016-05-12
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-08-10

目录

    /

    返回文章
    返回