留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

EMIES/p-TsOH型低共熔溶剂的合成及其氧化脱硫性能的研究

王鑫博 李秀萍 赵荣祥

王鑫博, 李秀萍, 赵荣祥. EMIES/p-TsOH型低共熔溶剂的合成及其氧化脱硫性能的研究[J]. 燃料化学学报(中英文), 2019, 47(1): 104-112.
引用本文: 王鑫博, 李秀萍, 赵荣祥. EMIES/p-TsOH型低共熔溶剂的合成及其氧化脱硫性能的研究[J]. 燃料化学学报(中英文), 2019, 47(1): 104-112.
WANG Xin-bo, LI Xiu-ping, ZHAO Rong-xiang. Synthesis of EMIES/p-TsOH type deep eutectic solvent and its oxidative desulfurization performance[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 104-112.
Citation: WANG Xin-bo, LI Xiu-ping, ZHAO Rong-xiang. Synthesis of EMIES/p-TsOH type deep eutectic solvent and its oxidative desulfurization performance[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 104-112.

EMIES/p-TsOH型低共熔溶剂的合成及其氧化脱硫性能的研究

基金项目: 

辽宁省博士启动基金 201501105

详细信息
    通讯作者:

    ZHAO Rong-xiang, Tel:13470542149, E-mail:zylhzrx@126.com

  • 中图分类号: TE624

Synthesis of EMIES/p-TsOH type deep eutectic solvent and its oxidative desulfurization performance

Funds: 

Doctoral Fund of Liaoning Province 201501105

  • 摘要: 通过1-乙基-3-甲基咪唑硫酸乙酯离子液体(EMIES)和对甲苯磺酸(p-TsOH)的混合物制备EMIES/p-TsOH型低共熔溶剂。其结构特征通过红外光谱、氢谱和热重技术进行了分析。并以EMIES/p-TsOH作为催化剂与萃取剂,H2O2作为氧化剂研究了其对模拟油中的硫化物的脱除性能。考察了反应温度、n(H2O2)/n(S)比、低共熔溶剂加入量及硫化物类型对脱硫效果的影响。在最佳的条件下,模拟油中二苯并噻吩(DBT)、4,6-二甲基二苯并噻吩(4,6-DMDBT)和苯并噻吩(BT)的脱除率分别为96.2%、92.2%和88.8%。经过五次循环使用后,DBT的脱除率仍达到93.6%。对该脱硫体系进行了动力学分析,其表观活化能为66.4kJ/mol。
  • 图  1  低共熔溶剂的合成及氢键模型

    Figure  1  Synthesis process and model of hydrogen bonding of deep eutectic solvents

    图  2  EMIES/p-TsOH、EMIES、p-TsOH的红外光谱谱图

    Figure  2  FT-IR spectra of the EMIES/p-TsOH, EMIES and p-TsOH

    图  3  低共熔溶剂的1H-NMR谱图

    Figure  3  1H-NMR spectra of DESs

    图  4  EMIES/p-TsOH低共熔溶剂的热重分析

    Figure  4  Thermogravimetric analysis of EMIES/p-TsOH

    图  5  温度对脱硫的影响

    Figure  5  Influence of the reaction temperature on desulfurization rate

    (reaction condition:Voil = 5 mL; VEDSs /Voil = 0.2:1; n(H2O2)/n(S)=6)

    图  6  氧硫比对脱硫率的影响

    Figure  6  Influence of n(H2O2)/n(S) molar rate on desulfurization rate

    (reaction condition: Voil = 5 mL; VEDSs /Voil = 0.2:1; t=70 ℃)

    图  7  低共熔溶剂的量对脱硫率的影响

    Figure  7  Influence of the amount of DESs on desulfurization rate

    (reaction condition: Voil = 5 mL; n(H2O2)/n(S) = 8; t=70 ℃)

    图  8  不同硫化物的脱除效果

    Figure  8  Removal efficiency of different sulfides

    (reaction condition: Voil = 5 mL; n(H2O2)/n(S) = 8; t= 70 ℃; VEDSs / Voil = 0.2:1)

    图  9  不同硫化物氧化脱除的动力学分析

    Figure  9  Kinetic analysis of oxidative removal of different sulfides

    图  10  不同温度下的一级动力学方程曲线

    Figure  10  First-order kinetics equation at different temperature

    图  11  在EMIES/p-TsOH催化作用下DBT的表观活化能

    Figure  11  Apparent activation energy for DBT under the catalytic action of EMIES/p-TsOH

    图  12  DBT和氧化产物的红外光谱谱图

    Figure  12  FT-IR spectra of DBT and the oxidation products

    图  13  EMIES/p-TsOH存在下的氧化脱硫机理

    Figure  13  Oxidative desulfurization mechanism in the presence of EMIES/p-TsOH

    表  1  不同脱硫体系对脱硫率的影响

    Table  1  Effect of different desulfurization systems on removal of sulfur compounds

    Different desulfurization systems S removal η/%
    EMIES/p-TsOH 1.4
    EMIES+H2O2 36
    EMIES/p-TsOH +H2O2 96.2
    reaction condition: 5 mL model oil, 70 ℃, n(H2O2)/n(S)=6, 1 mL EMIES/p-TsOH, 180 min
    下载: 导出CSV

    表  2  EMIES/p-TsOH的循环使用性能

    Table  2  Recycling performance of EMIES/p-TsOH

    Reclyce times 1 2 3 4 5
    Surfur removal η/% 96.2 96.0 95.5 94.3 93.6
    reaction condition: Voil=5 mL; n(H2O2)/n(S)=8;t=70 ℃; VEDSs /Voil=0.2:1
    下载: 导出CSV
  • [1] ABRO R, ABDELTAWAB A A, AL-DEYAB S S, YU G R, QAZI A B, GAO S R, CHEN X C. A review of extractive desulfurization of fuel oils using ionic liquids[J]. Rsc Adv, 2014, 4(67):35302-35317. doi: 10.1039/C4RA03478C
    [2] CAMPOS-MARTIN J M, CAPEL-SANCHEZ M C, PEREZ-PRESAS P, FIERRO J L G. Oxidative processes of desulfurization of liquid fuels[J]. J Appl Chem Biotechnol, 2010, 85(7):879-890. doi: 10.1002/jctb.v85:7
    [3] LI H, ZHU W, LU J, JIANG X, GONG L, ZHU G, YAN Y. Deep oxidative desulfurization of fuels catalyzed by pristine simple tungstic acid[J]. React Kinet Catal Lett, 2009, 96(1):165-173. doi: 10.1007/s11144-009-5426-7
    [4] CHEN J, CHEN C, ZHANG R, GUO L, HUA L, CHEN A, XIU Y, LIU X, HOU Z. Deep oxidative desulfurization catalyzed by an ionic liquid-type peroxotungsten catalyst[J]. RSC Adv, 2015, 5(33):25904-25910. doi: 10.1039/C5RA00136F
    [5] NIE Y, LI C, SUN A, MENG H, WANG Z. Extractive desulfurization of gasoline using imidazolium-based phosphoric ionic liquids[J]. Energy Fuels, 2006, 20(5):2083-2087. doi: 10.1021/ef060170i
    [6] EßER J, WASSERSCHEID P, JESS A. Deep desulfurization of oil refinery streams by extraction with ionic liquids[J]. Green Chem, 2004, 6(7):316-322. doi: 10.1039/B407028C
    [7] Lü H, REN W, WANG H, WANG Y, CHEN W, SUO Z. Deep desulfurization of diesel by ionic liquid extraction coupled with catalytic oxidation using an Anderson-type catalyst[(C4H9)4N]4NiMo6O24H6[J]. Appl Catal, 2013, 453:376-382. doi: 10.1016/j.apcata.2012.12.047
    [8] HAGENSON L C, NAIK S D, DORAISWAMY L K. Rate enhancements in a solid-liquid reaction using PTC, microphase, ultrasound and combinations thereof[J]. Chem Eng Sci, 1994, 49(24):4787-4800. doi: 10.1016/S0009-2509(05)80059-4
    [9] SHEN Y, LU X, MA X, HE J, ZHANG D, ZHAN H, XIA Q. Oxidative desulfurization of thiophene derivatives with H2O2 in the presence of catalysts based on MoO3/Al2O3 under mild conditions[J]. Kinet Catal, 2017, 58(1):28-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f3e53ace088e41a35d33c5b220d9cd04
    [10] YANG Y, LV G, DENG L, LU B, LI J, ZHANG J, SHI J, DU S. Ultra-deep desulfurization of diesel fuel via selective adsorption over modified activated carbon assisted by pre-oxidation[J]. J Cleaner Prod, 2017, 161:422-430. doi: 10.1016/j.jclepro.2017.05.112
    [11] SAEEDIRAD R, GANJALI S T, BAZMI M, RASHIDI A. Effective mesoporous silica-ZIF-8 nano-adsorbents for adsorptive desulfurization of gas stream[J]. J Taiwan Inst Chem Eng, 2018, 82:10-22. doi: 10.1016/j.jtice.2017.10.037
    [12] LI G, LI S, ZHANG M, WANG J, ZHU L, LIANG F, LIU R, MA T. Genetic rearrangement strategy for optimizing the dibenzothiophene biodesulfurization pathway in Rhodococcus erythropolis[J]. Appl Environ Microbiol, 2008, 74(4):971-976. doi: 10.1128/AEM.02319-07
    [13] LU Q, PENG W, XUN S, HE M, MA R, JIANG W, ZHU W, LI H. Controllable preparation of highly dispersed TiO2 nanoparticles for enhanced catalytic oxidation of dibenzothiophene in fuels[J]. Appl Organomet Chem, 2018, 32(6):e4351. doi: 10.1002/aoc.v32.6
    [14] CHAKMA S, DAS L, MOHOLKAR V S. Dye decolorization with hybrid advanced oxidation processes comprising sonolysis/Fenton-like/photo-ferrioxalate systems:A mechanistic investigation[J]. Sep Purif Technol, 2015, 156:596-607. doi: 10.1016/j.seppur.2015.10.055
    [15] YAZU K, YAMAMOTO Y, FURUYA T, MIKI K, UKEGAWA K. Oxidation of dibenzothiophenes in an organic biphasic system and its application to oxidative desulfurization of light oil[J]. Energy Fuels, 2001, 15(6):1535-1536. doi: 10.1021/ef0101412
    [16] 毛春峰, 赵荣祥, 李秀萍. CH3CONH2/ZnCl2低共熔溶剂脱除模拟油中的硫化物[J].辽宁石油化工大学学报, 2017, 37(5):1-7. doi: 10.3969/j.issn.1672-6952.2017.05.001

    MAO Chun-feng, ZHAO Rong-xiang, LI Xiu-ping. Removal of sulfides from simulated oil by CH3CONH2/ZnCl2 deep eutectic solvent[J]. J Liaoning Shihua Univ, 2017, 37(5):1-7. doi: 10.3969/j.issn.1672-6952.2017.05.001
    [17] ALIZADEH A, FAKHARI M, KHODEAI M M, ABDI G, AMIRIAN J. Oxidative desulfurization of model oil in an organic biphasic system catalysed by Fe3O4@SiO2-ionic liquid[J]. RSC Adv, 2017, 7(56):34972-34983. doi: 10.1039/C7RA04957A
    [18] ZHANG S, ZHANG Q, ZHANG Z C. Extractive desulfurization and denitrogenation of fuels using ionic liquids[J]. Ind Eng Chem Res, 2004, 43(2):614-622. doi: 10.1021/ie030561+
    [19] BÖSMANN A, DATSEVICH L, JESS A, LAUTER A, SCHMITZ C, WASSERSCHEID P. Deep desulfurization of diesel fuel by extraction with ionic liquids[J]. Chem Commun, 2001, (23):2494-2495. doi: 10.1039/b108411a
    [20] HUANG C, CHEN B, ZHANG J, LIU Z, LI Y. Desulfurization of gasoline by extraction with new ionic liquids[J]. Energy Fuels, 2004, 18(6):1862-1864. doi: 10.1021/ef049879k
    [21] GANO Z S, MJALLI F S, AL-WAHAIBI T, AL-WAHAIBI Y, ALNASHEF I M. Extractive desulfurization of liquid fuel with FeCl3-based deep eutectic solvents:experimental design and optimization by central-composite design[J]. Chem Eng Process, 2015, 93:10-20. doi: 10.1016/j.cep.2015.04.001
    [22] LI C, LI D, ZOU S, LI Z, YIN J, WANG A, CUI Y, YAO Z, ZHAO Q. Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents[J]. Green Chem, 2013, 15(10):2793-2799. doi: 10.1039/c3gc41067f
    [23] YIN J, WANG J, LI Z, LI D, YANG G, CUI Y, WANG A, LI C. Deep desulfurization of fuels based on an oxidation/extraction process with acidic deep eutectic solvents[J]. Green Chem, 2015, 17(9):4552-4559. doi: 10.1039/C5GC00709G
    [24] LIU W, JIANG W, ZHU W, ZHU W, LI H, GUO T, ZHU W, LI H. Oxidative desulfurization of fuels promoted by choline chloride-based deep eutectic solvents[J]. J Mol Catal A:Chem, 2016, 424:261-268. doi: 10.1016/j.molcata.2016.08.030
    [25] CAO J, SHANG Y, QI B, SUN X, ZHANG L, LIU H, ZHANG H, ZHOU X. Synthesis of pillar[n] arenes (n=5 and 6) with deep eutectic solvent choline chloride 2FeCl3[J]. RSC Adv, 2015, 5(13):9993-9996. doi: 10.1039/C4RA15758C
    [26] DAI D, WANG L, CHEN Q, HE M. Selective oxidation of sulfides to sulfoxides catalysed by deep eutectic solvent with H2O2[J]. J Chem Res, 2014, 38(3):183-185. doi: 10.3184/174751914X13923144871332
    [27] Lü H, LI P, DENG C, REN W, WANG S, LIU P. Deep catalytic oxidative desulfurization (ODS) of dibenzothiophene (DBT) with oxalate-based deep eutectic solvents (DESs)[J]. Chem Commun, 2015, 51(53):10703-10706. doi: 10.1039/C5CC03324A
    [28] MAO C, ZHAO R, LI X. Phenylpropanoic acid-based DESs as efficient extractants and catalysts for the removal of sulfur compounds from oil[J]. Fuel, 2017, 189:400-407. doi: 10.1016/j.fuel.2016.10.113
    [29] HOLBREY J D, REICHERT W M, SWATLOSKI R P, GRANT A. Efficient, halide free synthesis of new, low cost ionic liquids:1, 3-dialkylimidazolium salts containing methyl-and ethyl-sulfate anions[J]. Green Chem, 2002, 4(5):407-413. doi: 10.1039/b204469b
    [30] LI C, LI D, ZOU S, LI Z, YIN J, WANG A, CUI Y, YAO Z.Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents[J].Green Chem, 2013, 15(10):2793-2799. doi: 10.1039/c3gc41067f
    [31] WHEELER J L, PUGH M K, ATKINS S J, PORTER J M. Thermal breakdown kinetics of 1-ethyl-3-methylimidazolium ethylsulfate measured using quantitative infrared spectroscopy[J]. Appl Spectrosc, 2017, 71(12):2626-2631. doi: 10.1177/0003702817727293
    [32] HAO L, WANG M, SHAN W, DENG C, REN W, SHI Z, LV H. L-proline-based deep eutectic solvents (DESs) for deep catalytic oxidative desulfurization (ODS) of diesel[J]. J Hazard Mater, 2017, 339:216-222. doi: 10.1016/j.jhazmat.2017.06.050
    [33] GÍMEZ E, GONZÁLEZ B, CALVAR N, TOJO E, DOMINGUEZ A. Physical properties of pure 1-ethyl-3-methylimidazolium ethylsulfate and its binary mixtures with ethanol and water at several temperatures[J]. J Chem Eng Data, 2006, 51(6):2096-2102. doi: 10.1021/je060228n
    [34] DONG Y, NIE Y, ZHOU Q. Highly efficient oxidative desulfurization of fuels by Lewis acidic ionic liquids based on iron chloride[J]. Chem Eng Technol, 2013, 36(3):435-442. doi: 10.1002/ceat.v36.3
    [35] YUAN B, LI Y, YU F, LI X, XIE C, YU S. Benzylation with benzyl alcohol catalyzed by[ChCl] [TfOH]2, a brønsted acidic des with reaction control self-separation performance[J]. Catal Lett, 2018, 148(7):2133-2138. doi: 10.1007/s10562-018-2403-7
    [36] CHEN W J, XUE Z M, WANG J F, JIANG J Y, ZHAO X H, MU T C. Investigation on the thermal stability of deep eutectic solvents[J]. Acta Phy Chim Sin, 2017, 34(8):904-911. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201808008
    [37] SHU C, SUN T, ZHANG H, JIA J, LOU Z. A novel process for gasoline desulfurization based on extraction with ionic liquids and reduction by sodium borohydride[J]. Fuel, 2014, 121:72-78. doi: 10.1016/j.fuel.2013.12.037
    [38] JIANG W, ZHU W, LI H, WANG X, YIN S, CHANG Y, LI H. Temperature-responsive ionic liquid extraction and separation of the aromatic sulfur compounds[J]. Fuel, 2015, 140:590-596. doi: 10.1016/j.fuel.2014.09.083
    [39] SHU C, SUN T, ZHANG H, JIA J, LOU Z. A novel process for gasoline desulfurization based on extraction with ionic liquids and reduction by sodium borohydride[J]. Fuel, 2014, 121:72-78. doi: 10.1016/j.fuel.2013.12.037
    [40] CHEN J, CHEN C, ZHANG R, LI G, LI H, CHEN A, XIU Y, LIU X, HOU Z. Deep oxidative desulfurization catalyzed by an ionic liquid-type peroxotungsten catalyst[J]. RSC Adv, 2015, 5(33):25904-25910. doi: 10.1039/C5RA00136F
    [41] ZHANG C, PAN X, WANG F, LIU X. Extraction-oxidation desulfurization by pyridinium-based task-specific ionic liquids[J]. Fuel, 2012, 102:580-584. doi: 10.1016/j.fuel.2012.07.040
    [42] GAO H, GUO C, XING J, LIU H. Deep desulfurization of diesel oil with extraction using pyridinium-based ionic liquids[J]. Sep Sci Technol, 2012, 47(2):325-330. doi: 10.1080/01496395.2011.620583
    [43] ZHU W S, LI H, GU Q Q, WU P, ZHU G, YAN Y S, CHEN G Y. Kinetics and mechanism for oxidative desulfurization of fuels catalyzed by peroxo-molybdenum amino acid complexes in water-immiscible ionic liquids[J]. J Mol Catal A:Chem, 2011, 336(1):16-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0b661367d456e231af30d9e78b37ad9e
    [44] WANG D, QIAN E W, AMANO H, OKATA K, ISHIHARA A, KABE T. Oxidative desulfurization of fuel oil:Part Ⅰ. Oxidation of dibenzothiophenes using tert-butyl hydroperoxide[J]. Appl Catal A:Gen, 2003, 253(1):91-99. doi: 10.1016/S0926-860X(03)00528-3
    [45] WEI L, ZHOU Z Y, CHEN S P, XU C D, SU D, SCHUSTER M E, SUN S G. Electrochemically shape-controlled synthesis in deep eutectic solvents:Triambic icosahedral platinum nanocrystals with high-index facets and their enhanced catalytic activity[J]. Chem Commun, 2013, 49(95):11152-11154. doi: 10.1039/c3cc46473c
    [46] TRAKARNPRUK W, RUJIRAWORAWUT K. Oxidative desulfurization of gas oil by polyoxometalates catalysts[J]. Fuel Process Technol, 2009, 90(3):411-414. doi: 10.1016/j.fuproc.2008.11.002
    [47] NIE Y, DONG Y, GAO H, ZHANG X, ZHANG S. Regulating sulfur removal efficiency of fuels by Lewis acidity of ionic liquids[J]. Sci China:Chem, 2016, 59(5):526-531. doi: 10.1007/s11426-016-5563-6
    [48] LI L, ZHANG J, SHEN C, WANG Y, LUO G. Oxidative desulfurization of model fuels with pure nano-TiO2 as catalyst directly without UV irradiation[J]. Fuel, 2016, 167:9-16. doi: 10.1016/j.fuel.2015.11.047
    [49] SHIRAISHI Y, TACHIBANA K, HIRAI T, KOMASAWA I. Desulfurization and denitrogenation process for light oils based on chemical oxidation followed by liquid-liquid extraction[J]. Ind Eng Chem Res, 2002, 41(17):4362-4375. doi: 10.1021/ie010618x
    [50] YAN X M, MEI P, XIONG L, GAO L, YANG Q, GONG L. Mesoporous titania-silica-polyoxometalate nanocomposite materials for catalytic oxidation desulfurization of fuel oil[J]. Catal Sci Technol, 2013, 3(8):1985-1992. doi: 10.1039/c3cy20732c
    [51] ZHANG M, ZHU W, XUN S, LI H, GU Q, ZHAO Z, WANG Q. Deep oxidative desulfurization of dibenzothiophene with POM-based hybrid materials in ionic liquids[J]. Chem Eng J, 2013, 220:328-336. doi: 10.1016/j.cej.2012.11.138
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  39
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-17
  • 修回日期:  2018-11-02
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-01-10

目录

    /

    返回文章
    返回