留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe元素及点缺陷对焦炭表面NH3异相吸附的影响:密度泛函理论研究

李焕龙 金晶 侯封校 王永贞 翟中媛 赵冰

李焕龙, 金晶, 侯封校, 王永贞, 翟中媛, 赵冰. Fe元素及点缺陷对焦炭表面NH3异相吸附的影响:密度泛函理论研究[J]. 燃料化学学报(中英文), 2018, 46(12): 1505-1512.
引用本文: 李焕龙, 金晶, 侯封校, 王永贞, 翟中媛, 赵冰. Fe元素及点缺陷对焦炭表面NH3异相吸附的影响:密度泛函理论研究[J]. 燃料化学学报(中英文), 2018, 46(12): 1505-1512.
LI Huan-long, JIN Jing, HOU Feng-xiao, WANG Yong-zhen, ZHAI Zhong-yuan, ZHAO Bing. Effect of Fe and point deficiency on adsorption behavior of NH3 on coke surface: A density functional theory study[J]. Journal of Fuel Chemistry and Technology, 2018, 46(12): 1505-1512.
Citation: LI Huan-long, JIN Jing, HOU Feng-xiao, WANG Yong-zhen, ZHAI Zhong-yuan, ZHAO Bing. Effect of Fe and point deficiency on adsorption behavior of NH3 on coke surface: A density functional theory study[J]. Journal of Fuel Chemistry and Technology, 2018, 46(12): 1505-1512.

Fe元素及点缺陷对焦炭表面NH3异相吸附的影响:密度泛函理论研究

基金项目: 

十三五国家科技支撑项目 2017YFF0209800

详细信息
  • 中图分类号: TK16

Effect of Fe and point deficiency on adsorption behavior of NH3 on coke surface: A density functional theory study

Funds: 

Thirteenth Five-Year″ Plan for Science & Technology Support of China 2017YFF0209800

More Information
  • 摘要: 采用密度泛函理论,并使用具有周期性边界条件的石墨烯模型近似模拟焦炭表面,研究了Fe原子修饰及点缺陷对NH3在焦炭表面异相吸附的影响。计算结果表明,NH3分子在点缺陷石墨烯表面的吸附属于物理吸附,结合能为-0.381 eV;NH3分子吸附在Fe修饰的完整石墨烯表面属于化学吸附,吸附能为-1.442 eV;Fe原子修饰及点缺陷单独存在下NH3的吸附能均大于NH3在完整石墨烯表面的吸附(吸附能为-0.190 eV)。此外,Fe原子修饰与点缺陷共存对NH3的吸附具有协同作用,结合能达到-3.538 eV,明显大于两者单独存在下NH3的吸附能之和,综合分析Mulliken布居数与态密度,Fe原子与石墨烯表面、NH3分子之间有更多地电荷转移,可以解释两者共存对NH3吸附协同促进的原因。
  • 图  1  点缺陷石墨烯表面与完整石墨烯表面

    Figure  1  Surface of defect graphene and intact grapheme

    图  2  Fe修饰的点缺陷石墨烯表面的俯视图与侧视图

    Figure  2  Top view and side view of Fe modified defect graphene surface

    图  3  Fe修饰的完整石墨烯表面的俯视图与侧视图

    Figure  3  Top view and side view of Fe-modified intact graphene surface

    图  4  NH3在石墨烯表面吸附的俯视图与侧视图

    Figure  4  Top and side views of NH3 adsorption on graphene surface

    图  5  差分电荷密度图

    Figure  5  The deformation electron density

    (a): adsorption of NH3 on defective surface; (b): adsorption of NH3 on intact graphene surface with Fe; (c): adsorption of NH3 on defective graphene surface with Fe atom; (d): intact graphene surface; (e): defective surface

    图  6  NH3在石墨烯表面吸附的PDOS

    Figure  6  PDOS of NH3 on graphene surface

    (a): NH3-Dgra; (b): NH3-Gra

    图  7  NH3在Fe修饰的完整石墨烯表面吸附的俯视图与侧视图

    Figure  7  Top and side views of adsorption of NH3 on Fe-modified intact graphene

    图  8  NH3在Fe修饰的完整石墨烯表面吸附的PDOS

    Figure  8  PDOS of adsorption of NH3 on Fe-modified intact graphene surface

    图  9  NH3分子在Fe修饰的缺陷石墨烯表面吸附的俯视图与侧视图

    Figure  9  Top and side views of adsorption of NH3 on Fe-modified defect graphene surface

    图  10  NH3在Fe修饰的缺陷石墨烯表面吸附的PDOS

    Figure  10  PDOS of adsorption of NH3 on Fe-modified defect graphene surface

    表  1  石墨烯晶胞晶格常数

    Table  1  The lattice constants of graphene cell

    a/nm b/nm c/nm d/nm
    Calculated value 0.2452 0.2452 0.6873 0.1416
    Experimental value 0.2460 0.2460 0.6800 0.1420[28]
    Deviation /% 0.33 0.33 1.07 0.28
    下载: 导出CSV

    表  2  Fe在石墨烯表面的结合能与NH3在不同石墨烯表面的吸附能

    Table  2  Binding energy of Fe on surface of graphene and adsorption energy of NH3 on different graphene surfaces

    Total/eV NH3/eV Gra/eV Dgra/eV Fe/eV EB/eV EB*/eV
    Fe+Gra -37060.621 - -33165.088 - -3894.255 -1.279 -
    Fe+Dgra -36022.865 - - -32120.718 -3894.255 -7.891 -
    NH3+Gra -34703.083 -1537.8045 -33165.088 - - -0.190 0-(-0.17)[29, 30]
    NH3+Dgra -33658.904 -1537.8045 - -32120.718 - -0.381 -0.24[31]
    NH3+Fe+Gra -38599.868 -1537.8045 -33165.088 - -3894.255 -1.442 -
    NH3+Fe+Dgra -37564.207 -1537.8045 - -32120.718 -3894.255 -3.538 -
    下载: 导出CSV

    表  3  不同吸附体系下的原子间距

    Table  3  Interatomic distance in different adsorption systems

    Interatomic distance /nm
    dC-C dFe-N dFe-C dFe-H dN-H dN-C dH-C
    NH3+Dgra 0.2491 - - - 0.1023 0.3452 0.3080
    NH3+Fe+Gra 0.1438 0.2078 0.2165 0.2629 0.1024 - -
    NH3+Fe+Dgra 0.2637 0.2036 0.1772 0.2592 0.1025 - -
    下载: 导出CSV

    表  4  NH3在不同石墨烯表面吸附的Mulliken布居数

    Table  4  Mulliken population of NH3 adsorbed on different graphene surfaces

    Mulliken population /e
    Fe N H C1 C2 C3 C4 C5 C6
    NH3+Gra - -0.462 0.151 -0.002 -0.001 -0.002 -0.003 -0.001 -0.002
    NH3 - -0.470 0.157 - - - - - -
    NH3+Dgra - -0.489 0.176 -0.068 -0.064 -0.061 - - -
    NH3+Fe+Gra 0.136 -0.550 0.153 -0.013 -0.013 -0.016 -0.014 -0.015 -0.014
    NH3+Fe+Dgra -0.209 -0.884 0.288 -0.014 -0.018 -0.020 - - -
    下载: 导出CSV
  • [1] REN Q, ZHAO C, XIN W, CAI L, CHEN X, SHEN J, TANG G, WANG Z. Effect of mineral matter on the formation of NOx precursors during biomass pyrolysis[J]. J Anal Appl Pyrolysis, 2009, 85(1/2):447-453. doi: 10.1016-j.jaap.2008.08.006/
    [2] AHMAD T, AWAN I A, NISAR J, AHMAD I. Influence of inherent minerals and pyrolysis temperature on the yield of pyrolysates of some Pakistani coals[J]. Energy Convers Manage, 2009, 50(5):1163-1171. doi: 10.1016/j.enconman.2009.01.031
    [3] 顾颖, 刘小伟, 乔瑜, 赵波, 周俊波, 徐明厚.煤热解过程中FeCl3对氮分布规律的影响[J].中国电机工程学报, 2011, 31(35):59-64. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201135012

    GU Ying, LIU Xiao-wei, QIAO Yu, ZHAO Bo, ZHOU Jun-bo, XU Ming-hou. Effect of FeCl3 on nitrogen distribution in coal pyrolysis[J]. Proc CSEE, 2011, 31(35):59-64. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201135012
    [4] GUAN R, LI W, CHEN H, LI B. The release of nitrogen species during pyrolysis of model chars loaded with different additives[J]. Fuel Process Technol, 2004, 85(8/10):1025-1037. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=59c178294549b0421beba65f9c700202
    [5] 崔燕妮, 张军, 田禹.矿物质对污水污泥微波热解过程中NOx前驱物的影响研究[J].环境工程, 2012, 30(s2):481-485. http://d.old.wanfangdata.com.cn/Conference/8566912

    CHUN Yan-ni, ZHANG Jun, TIAN Yu. The effect of mineral matter on the formation of NOx precursors during microwave-induced pyrolysis of sewage sludge[J]. Environ Eng, 2012, 30(s2):481-485. http://d.old.wanfangdata.com.cn/Conference/8566912
    [6] 侯封校, 金晶, 林郁郁, 郭明山, 沈洪浩, 肖凯华, 李尚. Fe2O3对污泥热解特性及部分NOx前驱物转化规的影响[J].燃烧科学与技术, 2017, 23(1):90-95. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rskxyjs201701014

    HOU Feng-xiao, JIN Jing, LIN Yu-yu, GUO Ming-shan, SHEN Hong-hao, XIAO Kai-hua, LI Shang. Influence of Fe2O3 on sludge pyrolysis characteristics and partial transformation mechanisms of NOx precursors[J]. J Combust Sci Technol, 2017, 23(1):90-95. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rskxyjs201701014
    [7] XU C, TSUBOUCHI N, HASHIMOTO H, OHTSUKA Y. Catalytic decomposition of ammonia gas with metal cations present naturally in low rank coals[J]. Fuel, 2005, 84(14/15):1957-1967. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4c02a4c379ee7b8036b3247293f2b342
    [8] 徐明艳, 常丽萍.热解过程中煤氮定向转化为N2的研究[J].煤化工, 2005, 33(6):36-40. doi: 10.3969/j.issn.1005-9598.2005.06.009

    XU Ming-yan, CHANG Li-ping. Study on the conversion of nitrogen in the coal into N2 during pyrolysis[J].Coal Chem Ind, 2005, 33(6):36-40. doi: 10.3969/j.issn.1005-9598.2005.06.009
    [9] OHTSUKA Y, XU C, KONG D, TSUBOUCHI N. Decomposition of ammonia with iron and calcium catalysts supported on coal chars[J]. Fuel, 2004, 83(6):685-692. doi: 10.1016/j.fuel.2003.05.002
    [10] TSUBOUCHI N, HASHIMOTO H, OHTSUKA Y. Catalytic performance of limonite in the decomposition of ammonia in the coexistence of typical fuel gas components produced in an air-blown coal gasification process[J]. Energy Fuels, 2007, 21(6):3063-3069. doi: 10.1021/ef070096j
    [11] MORI H, KENJI ASAMI A, OHTSUKA Y. Role of iron catalyst in fate of fuel nitrogen during coal pyrolysis[J]. Energy Fuels, 1996, 10(4):1022-1027. doi: 10.1021-ef960035d/
    [12] TSUBOUCHI N, OHTSUKA Y. Nitrogen chemistry in coal pyrolysis:Catalytic roles of metal cations in secondary reactions of volatile nitrogen and char nitrogen[J]. Fuel Process Technol, 2008, 89(4):379-390. http://www.sciencedirect.com/science/article/pii/S037838200700241X
    [13] 吕俊复, 柯希玮, 蔡润夏, 张缦, 吴玉新, 杨海瑞, 张海.循环流化床燃烧条件下焦炭表面NOx还原机理研究进展[J].煤炭转化, 2018, 41(1):1-12. doi: 10.3969/j.issn.1004-4248.2018.01.001

    LU Jun-fu, KE Xi-wei, CAI Run-xia, ZHANG Man, WU Yu-xing, YANG Hai-rui, ZHANG Hai. Research progress on the kinetics of NOx reduction over char in fluidized bed combusition[J].Coal Convers, 2018, 41(1):1-12. doi: 10.3969/j.issn.1004-4248.2018.01.001
    [14] 徐秀峰, 顾永达, 陈诵英.铁催化剂对煤热解过程中氮元素迁移的影响[J].燃料化学学报, 1998, 26(l):18-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800473782

    XU Xiu-feng, GU Yong-da, CHEN Song-ying. Effect of iron addition on transformation of nitrogen during coal pyrolysis[J]. J Fuel Chem Technol, 1998, 26(l):18-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800473782
    [15] LIU L, JIN J, LIN Y, HOU F, LI S. The effect of calcium on nitric oxide heterogeneous adsorption on carbon:A first-principles study[J]. Energy, 2016, 106:212-220. doi: 10.1016/j.energy.2016.02.148
    [16] AND T K, TOMITA A. Analysis of the reaction of carbon with NO/N2O using ab initio molecular orbital theory[J]. J Phys Chem B, 1999, 103(17):275-278. doi: 10.1021/jp9845928
    [17] ZHANG H, JIANG X, LIU J, SHEN J. New insightsinto the heterogeneous reduction reaction between NO and char-bound nitrogen[J]. Ind Eng Chem Res, 2014, 53(15):6307-6315. doi: 10.1021/ie403920j
    [18] DENIS P A, IRIBARNE F. Theoretical investigation on the interaction between beryllium, magnesium and calcium with benzene, coronene, cirumcoronene and graphene[J]. Chem Phys, 2014, 430(2):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7127e118b7754d6725f5b4b2c2d73870
    [19] 王泽忠.煤焦微观结构对再燃还原NOx的影响[D].长沙: 长沙理工大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10536-1016263733.htm

    WANG Ze-zhong. Effect of microstructure of coal char on NOx reduction by reburning[D]. Changsha: Changsha University of Science & Technology, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10536-1016263733.htm
    [20] 张金刚, 孙志刚, 郭强, 王玉军, 于广锁, 刘海峰, 王辅臣.神府煤热解的结构变化及煤焦加氢反应性研究[J].燃料化学学报, 2017, 45(2):129-137. doi: 10.3969/j.issn.0253-2409.2017.02.001

    ZHANG Jin-gang, SUN Zhi-gang, GUO Qiang, WANG Yu-jun, YU Guang-suo, LIU Hai-feng, WANG Fu-chen. Structural changes of Shenfu coal in pyrolysis and hydrogasification reactivity of the char[J]. J Fuel Chem Technol, 2017, 45(2):129-137. doi: 10.3969/j.issn.0253-2409.2017.02.001
    [21] LI X, HAYASHI J I, LI C. FT-Raman spectroscopic study of the eVolution of char structure during the pyrolysis of a victorian brown coal[J]. Fuel, 2006, 85(12/13):1700-1707. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5f1d929e70499f5b83966ba0dfc5e28c
    [22] 欧阳方平, 王焕友, 李明君, 肖金, 徐慧.单空位缺陷对石墨纳米带电子结构和输运性质的影响[J].物理学报, 2008, 57(11):7132-7138. http://d.old.wanfangdata.com.cn/Periodical/wlxb200811068

    OUYANG Fang-ping, WANG Huan-you, LI Ming-jun, XIAO Jin, XU Hui. Effect of single vacancy defects on the electronic structure and transport properties of graphite nanobelts[J]. Acta Phys Sin, 2008, 57(11):7132-7138. http://d.old.wanfangdata.com.cn/Periodical/wlxb200811068
    [23] 欧阳方平, 徐慧, 林峰.双空位缺陷石墨纳米带的电子结构和输运性质研究[J].物理学报, 2009, 58(6):4132-4136. doi: 10.3321/j.issn:1000-3290.2009.06.081

    OUYANG Fang-ping, XU Hui, LIN Feng. Study on electronic structure and transport properties of double vacancy defect graphite nanobelts[J].Acta Phys Sin, 2009, 58(6):4132-4136. doi: 10.3321/j.issn:1000-3290.2009.06.081
    [24] YANG P, LI X, ZHAO Y. Effect of triangular vacancy defect on thermal conductivity and thermal rectification in graphene nanoribbons[J]. Phys Lett A, 2013, 377(34/36):2141-2146. http://www.sciencedirect.com/science/article/pii/S0375960113005756
    [25] DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J Chem Phys, 1990, 92(1):508-517. doi: 10.1063-1.458452/
    [26] FU X, WAROT FONROSE B, ARRAS R. Generalized gradient approximation made simple[J]. Appl Phys Lett, 2015, 125(6):89-96. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0212186302/
    [27] TKATCHENKO A, SCHEFFLER M. Accurate van-der-waals interactions from (semi)-local density functional theory[C]. APS Meeting Abstracts, 2009. http://adsabs.harvard.edu/abs/2009APS..MARD37004T
    [28] WANG M, GUO Y, WANG Q, ZHANG J, HUANG J, LU X, WANG K, ZHANG H, LENG Y. Density functional theory study of interactions between glycine and TiO2/graphene nanocomposites[J]. Chem Phys Lett, 2014, 599(4):86-91. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=34a8493411a232408b2f228230a8f508
    [29] CHARLES W, BAUSCHLICHER J, ALESSANDRA R. Binding of graphite and to graphite and to a(9, 0) carbon nanotube[J]. Phys Rev B, 2004, 70(11):2516-2528. http://www.mendeley.com/research/binding-nh3-graphite-90-carbon-nanotube/
    [30] BAI L, ZHOU Z. Computational study of B-or N-doped single-walled carbon nanotubes as NH3 and NO2 sensors[J]. Carbon, 2007, 45(10):2105-2110. doi: 10.1016/j.carbon.2007.05.019
    [31] ZHANG Y, CHEN Y, ZHOU K, LIU C, ZENG J, ZHANG H, PENG Y. Improving gas sensing properties of graphene by introducing dopants and defects:A first-principles study.[J]. Nanotechnology, 2009, 20(18):1-23. http://www.ncbi.nlm.nih.gov/pubmed/19420616
    [32] WIENER G W, BERGER J A. Structure and magnetic properties of some transition metal nitrides[J]. JOM, 1955, 7(2):360-368. doi: 10.1007/BF03377510
    [33] 于圣.过渡金属修饰石墨烯吸附性能[D].吉林: 吉林大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10183-1014297668.htm

    YU Seng. Adsorption properties of graphene modified by transition metal[D]. Jilin: Jilin University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10183-1014297668.htm
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  163
  • HTML全文浏览量:  72
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-17
  • 修回日期:  2018-09-27
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-12-10

目录

    /

    返回文章
    返回