留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ru/有机改性蛭石催化乙酰丙酸甲酯加氢性能的研究

王磊 徐天晓 韩燕絮 庆绍军 马昱博

王磊, 徐天晓, 韩燕絮, 庆绍军, 马昱博. Ru/有机改性蛭石催化乙酰丙酸甲酯加氢性能的研究[J]. 燃料化学学报(中英文), 2020, 48(1): 100-107.
引用本文: 王磊, 徐天晓, 韩燕絮, 庆绍军, 马昱博. Ru/有机改性蛭石催化乙酰丙酸甲酯加氢性能的研究[J]. 燃料化学学报(中英文), 2020, 48(1): 100-107.
WANG Lei, XU Tian-xiao, HAN Yan-xu, QING Shao-jun, MA Yu-bo. Study on the catalytic hydrogenation of methyl levulinate over Ru/organic modified vermiculite[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 100-107.
Citation: WANG Lei, XU Tian-xiao, HAN Yan-xu, QING Shao-jun, MA Yu-bo. Study on the catalytic hydrogenation of methyl levulinate over Ru/organic modified vermiculite[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 100-107.

Ru/有机改性蛭石催化乙酰丙酸甲酯加氢性能的研究

基金项目: 

国家自然科学基金 21808192

国家自然科学基金 U1703128

岭南师范学院人才专项 ZL2017

新疆维吾尔自治区自然科学基金 2016D01C077

新疆维吾尔自治区高校科研计划 XJEDU2017S002

详细信息
  • 中图分类号: O646.38

Study on the catalytic hydrogenation of methyl levulinate over Ru/organic modified vermiculite

Funds: 

the National Nature Science Foundation of China 21808192

the National Nature Science Foundation of China U1703128

the Doctoral Scientific Research Staring Foundation of Lingnan Normal University ZL2017

Natural Science Foundation of Xinjiang Uygur Autonomous Region 2016D01C077

Foundation of Xinjiang Education Department XJEDU2017S002

More Information
  • 摘要: 以有机改性蛭石为载体,RuCl3·xH2O为活性组分前驱体,采用吸附-沉淀法制备催化剂Ru/有机改性蛭石(Ru/OV),将其用于乙酰丙酸甲酯(ML)催化加氢反应中。采用X射线衍射(XRD)、N2物理吸附-脱附、透射电镜(TEM)、X射线光电子能谱(XPS)对催化剂进行表征。结合单因素和正交实验考察了反应温度、反应压力、反应时间对乙酰丙酸甲酯加氢效果的影响,在最佳工艺条件下乙酰丙酸甲酯的转化率达84%,γ-戊内酯(GVL)选择性达100%。经重复使用20次后,ML的转化率仍然保持在80%以上,GVL的选择性为100%。
  • 图  1  催化剂的XRD谱图

    Figure  1  XRD patterns of the Ru/OV catalysts with different states

    (a): 1°-10°; (b): 5°-80°

    图  2  有机改性蛭石和Ru/有机改性蛭石的N2吸附-脱附曲线(嵌图为对应的孔径分布)

    Figure  2  N2 adsorption-desorption isotherms of the origanic pillared vermiculite and Ru/origanic pillared vermiculite (the inset is pore size distribution)

    图  3  Ru/OV催化剂的TEM照片

    Figure  3  TEM images of the Ru/organic pillared vermiculite

    图  4  Ru/OV催化剂的XPS谱图

    Figure  4  XPS spectra of the Ru/organic pillared vermiculite

    图  5  反应压力对乙酰丙酸甲酯加氢的影响

    Figure  5  Effect of reaction pressure on the hydrogenation of methyl levulinate

    图  6  反应温度对乙酰丙酸甲酯加氢的影响

    Figure  6  Effect of reaction temperature on the hydrogenation of methyl levulinte

    图  7  反应时间对乙酰丙酸甲酯加氢的影响

    Figure  7  Effect of reaction time on the hydrogenation of methyl levulinate

    图  8  催化剂的重复使用性能

    Figure  8  Results of catalyst reuse

    表  1  有机改性蛭石和Ru/有机改性蛭石N2-物理吸附分析

    Table  1  N2 physical adsorption-desorption data of the origanic pillared vermiculite and the Ru/origanic pillared vermiculite

    SampleSpecial surface area A/(m2·g-1)Total pore volume v/(cm3·g-1)Average pore diameter d/nm
    OV31.00.0654.23
    Ru/OV35.30.0983.83
    下载: 导出CSV

    表  2  正交实验安排

    Table  2  Orthogonal experimental arrangements

    FactorLevels
    Reaction pressure p/MPa3.54.04.5
    Reaction temperature t/℃110130150
    Reaction time t/h4.55.05.5
    下载: 导出CSV

    表  3  ML加氢正交试验

    Table  3  Orthogonal test results of ML hydrogenation

    Sample numberA (reaction
    pressure p/MPa)
    B (reaction
    temperature t/℃)
    C (reaction
    time t/h)
    Blank sample
    (error)
    ML conversion
    x/%
    13.51104.5160.18
    23.51305.0275.20
    33.51505.5362.91
    44.01105.0366.88
    54.01305.5180.73
    64.01504.5265.80
    74.51105.5280.19
    84.51304.5377.53
    94.51505.0172.16
    Average value166.1069.0867.8471.02
    Average value 271.1477.8271.4173.73
    Average value 376.6266.9574.6169.10
    Sample limit error10.5310.866.774.63
    Optimization levels323
    下载: 导出CSV

    表  4  正交试验方差分析

    Table  4  Orthogonal test variance analysis table

    FactorSquare of
    deviance(Si)
    Degree of
    freedom(fi)
    F critical-
    values
    F0.01F0.05Significancea
    Reaction pressure(p)166.4225.1310.925.14-
    Reaction temperature(t)198.6826.1210.925.14*
    Reaction time(t)69.0222.1310.925.14-
    Error32.462----
    a: when FiF0.01, it is highly significant, denoted as**; when F0.01FiF0.05, it is significant, denoted as*
    下载: 导出CSV

    表  5  ML加氢验证实验及结果

    Table  5  Results of ML hydrogenation verification experiment

    Sample codeReaction
    pressure p/MPa
    Reaction
    temperature t/℃
    Reaction
    time t/h
    ML
    conversion x/%
    Average
    value/%
    14.51305.584.93
    24.51305.583.9584.45
    34.51305.584.47
    下载: 导出CSV
  • [1] ZHANG C T, HUO Z B, REN D Z, SONG Z Y, LIU Y J, JIN F M, ZHOU W M. Catalytic transfer hydrogenation of levulinate ester into γ-valerolactone over ternary Cu/ZnO/Al2O3 catalyst[J]. J Energy Chem, 2019, 32:189-197. doi: 10.1016/j.jechem.2018.08.001
    [2] LILGA M A, PADMAPERUMA A B, AUBERRY D L, JOB H M, SWITA M S. Ketonization of levulinic acid and γ-valerolactone to hydrocarbon fuel precursors[J]. Catal Today, 2018, 302:80-86. doi: 10.1016/j.cattod.2017.06.021
    [3] KANG S M, FU J X, YE Y Y, LIAO W B, XIAO Y K, YANG P J, LIU G H. One-pot production of hydrocarbon oils from biomass derived γ-valerolactone[J]. Fuel, 2018, 216:747-751. doi: 10.1016/j.fuel.2017.12.062
    [4] HAN J. Integrated process for simultaneous production of jet fuel range alkenes and N-methylformanilide using biomass-derived gamma-valerolactone[J]. J Ind Eng Chem, 2017, 48:173-179. doi: 10.1016/j.jiec.2016.12.036
    [5] SONG B, YU Y, WU H W. Solvent effect of gamma-valerolactone (GVL) on cellulose and biomass, hydrolysis in hot-compressed GVL/water mixtures[J]. Fuel, 2018, 232:317-322. doi: 10.1016/j.fuel.2018.05.154
    [6] LI X Y, LIU Q L, SI C L, LU L F, LUO C H, GU X C, LU W, LIU X B. Green and efficient production of furfural from corn cob over H-ZSM-5 using γ-valerolactone as solvent[J]. Ind Crop Prod, 2018, 120:343-350. doi: 10.1016/j.indcrop.2018.04.065
    [7] FENG J, GU X C, XUE Y D, HAN Y W, LU X B. Production of gamma-valerolactone from levulinic acid over a Ru/C catalyst using formic acid as the sole hydrogen source[J]. Sci Total Environ, 2018, 633:426-432. doi: 10.1016/j.scitotenv.2018.03.209
    [8] UPARE P P, LEE J M, HWANG D W, HALLIGUDI S B, HWANG Y K, CHANG J S. Selective hydrogenation of levulinic acid to γ-valerolactone over carbon-supported noble metal catalysts[J]. J Ind Eng Chem, 2011, 17(2):287-292. doi: 10.1016/j.jiec.2011.02.025
    [9] CAO S, MONNIER J R, WILLIAMS C T, DIAO W J, REGALBUTO J R. Rational nanoparticle synthesis to determine the effects of size, support, and K dopant on Ru activity for levulinic acid hydrogenation to γ-valerolactone[J]. J Catal, 2015, 326:69-81. doi: 10.1016/j.jcat.2015.03.004
    [10] YAN Z P, LU L, LIU S J. Synthesis of γ-valerolactone by hydrogenation of biomass-derived levulinic acid over Ru/C catalyst[J]. Energy Fuels, 2009, 23(8):3853-3858. doi: 10.1021/ef900259h
    [11] LUO W H, DEKA U, BEALE A M, VAN ECK E R H, BRUIJNINCX P C A, WECKHUYSEN B M. Ruthenium-catalyzed hydrogenation of levulinic acid:Influence of the support and solvent on catalyst selectivity and stability[J]. J Catal, 2013, 301:175-186. doi: 10.1016/j.jcat.2013.02.003
    [12] WU L Q, SONG J L, ZHOU B W, WU T B, JIANG T, HAN B X. Preparation of Ru/graphene using glucose as carbon source and hydrogenation of levulinic acid to gamma-valerolactone[J]. Chem Asian J, 2016, 11(19):2792-2796. doi: 10.1002/asia.201600453
    [13] MALAMIS S, KATSOU E. A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite:Examination of process parameters, kinetics and isotherms[J]. J Hazard Mater, 2013, 252/253:428-461. doi: 10.1016/j.jhazmat.2013.03.024
    [14] 王磊, 韩燕絮, 徐天晓, 刘浪. Ru/改性蛭石制备及催化马来酸酯加氢性能研究[J].天然气化工, 2018, 43(6):24-28. doi: 10.3969/j.issn.1001-9219.2018.06.006

    WANG Lei, HAN Yan-xu, XU Tian-xiao, LIU Lang. Preparation of Ru/modified-vermiculite catalyst and the catalytic performance for hydrogenation of dimethyl maleate[J]. Nat Gas Chem Ind, 2018, 43(6):24-28. doi: 10.3969/j.issn.1001-9219.2018.06.006
    [15] DIVAKAR D, MANIKANDAN D, RUPA V, PREETHI E L, CHANDRASEKAR R, SIVAKUMAR T. Palladium-nanoparticle intercalated vermiculite for selective hydrogenation of α, β-unsaturated aldehydes[J]. J Chem Technol Biot, 2007, 82(3):253-258. http://www.researchgate.net/publication/230046409_Palladium-nanoparticle_intercalated_vermiculite_for_selective_hydrogenation_of_ab-unsaturated_aldehydes?ev=prf_high
    [16] LIU Y F, HE Z H, ZHOU L, HOU Z S, AILI WU M J. Simultaneous oxidative conversion and CO2 reforming of methane to syngas over Ni/vermiculite catalysts[J]. Catal Commun, 2013, 42:40-44. doi: 10.1016/j.catcom.2013.07.034
    [17] AGNIESZKA W, WOJCIECH S, OLGA F, KAMILA K, ARTUR B, TUKSAZ J, TOMASZ D, CRZEGORZ M, SONIA F. Study of adsorptive materials obtained by wet fine milling and acid activation of vermiculite[J]. Appl Clay Sci, 2018, 155:37-49. doi: 10.1016/j.clay.2018.01.002
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  78
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-25
  • 修回日期:  2019-11-28
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-01-10

目录

    /

    返回文章
    返回