留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mo2N/Zr-MCM-41新型催化剂的制备、表征及其麻疯树油加氢脱氧的催化性能

谭启航 曹阳 李进

谭启航, 曹阳, 李进. Mo2N/Zr-MCM-41新型催化剂的制备、表征及其麻疯树油加氢脱氧的催化性能[J]. 燃料化学学报(中英文), 2018, 46(11): 1323-1331.
引用本文: 谭启航, 曹阳, 李进. Mo2N/Zr-MCM-41新型催化剂的制备、表征及其麻疯树油加氢脱氧的催化性能[J]. 燃料化学学报(中英文), 2018, 46(11): 1323-1331.
TAN Qi-hang, CAO Yang, LI Jin. Preparation and characterization of Mo2N/Zr-MCM-41 catalyst and its performance in hydrodeoxygenation of Jatropha curcas oil[J]. Journal of Fuel Chemistry and Technology, 2018, 46(11): 1323-1331.
Citation: TAN Qi-hang, CAO Yang, LI Jin. Preparation and characterization of Mo2N/Zr-MCM-41 catalyst and its performance in hydrodeoxygenation of Jatropha curcas oil[J]. Journal of Fuel Chemistry and Technology, 2018, 46(11): 1323-1331.

Mo2N/Zr-MCM-41新型催化剂的制备、表征及其麻疯树油加氢脱氧的催化性能

基金项目: 

海南省重点 ZDYF2018134

详细信息
  • 中图分类号: O643.361

Preparation and characterization of Mo2N/Zr-MCM-41 catalyst and its performance in hydrodeoxygenation of Jatropha curcas oil

Funds: 

the Hainan Provincial Key Projects ZDYF2018134

More Information
  • 摘要: 采用水热法合成载体MCM-41与不同初始n(Si)/n(Zr)的Zr-MCM-41,由(NH46Mo7O24与载体经过共浸渍、高温焙烧、氨气程序升温氮化制备了Mo2N/Zr-MCM-41新型加氢脱氧催化剂。采用XRD、BET、XPS、TEM以及吡啶红外等手段对催化剂进行了表征,并采用高压反应釜评价了不同n(Si)/n(Zr)的Mo2N/Zr-MCM-41催化麻疯树油加氢脱氧反应的性能。结果表明,Zr改性后的载体与纯硅MCM-41同样具有良好的孔道结构,且L酸、B酸酸值提高。Mo2N作为活性组分体现出了优异的加氢脱氧性能,在反应温度350℃、氢气分压3.0 MPa条件下催化的产品油组成主要为直链烷烃与芳香族化合物,占产品组分的90%(质量分数)以上;不同n(Si)/n(Zr)的新型催化剂脱氧率可高达100%;芳香族化合物含量高于直链烷烃,最高可占组成的72.09%(质量分数),主要以单环、双环芳香烃为主,碳链长度分布在C8-16;直链烷烃碳链长度分布在C8-17。通过Mo2N/Zr-MCM-41催化后的麻疯树油经分馏处理后可制备生物燃料。
  • 图  1  不同Zr掺杂的Zr-MCM-41载体的XRD谱图

    Figure  1  XRD patterns of Zr-MCM-41 carrier with different zirconium doping

    a: 5; b: 10; c: 20; d: 40; e: 80

    图  2  Mo2N/Zr-MCM-41的XRD谱图

    Figure  2  XRD spectrum of Mo2N/Zr-MCM-41

    (a): small-angle XRD of Mo2N/Zr-MCM-41; (b)-a: wide-angle XRD of Mo2N/Zr-MCM-41; (b)-b: wide-angle XRD of the carrier

    图  3  Mo2N/Zr-MCM-41催化剂的XPS谱图

    Figure  3  XPS spectra of the Mo2N/Zr-MCM-41 catalyst

    (a): N 1s; (b): Mo 3d

    图  4  Mo2N/Zr-MCM-41催化剂的TEM照片

    Figure  4  TEM image of Mo2N/Zr-MCM-41 catalyst

    图  5  产品油直链烷烃及芳香族化合物组分含量

    Figure  5  Components of linear paraffins and aromatics compounds in the oil generated from HDO of Jatropha curcas oil over the Mo2N/Zr-MCM -41 catalysts with different n(Si)/n(Zr)

    表  1  不同n(Si)/n(Zr)的Zr-MCM-41载体在150和350 ℃下的L酸和B酸值

    Table  1  L acid and B acid values of Zr-MCM-41 carrier with different n(Si)/n(Zr) at 150 and 350 ℃

    n(Si)/n(Zr) Acid density at 150 ℃ /(μmol·g-1) Acid density at 350 ℃ /(μmol·g-1)
    L acid B acid L acid B acid
    10 0.32517 0.01313 0.00533 0
    20 0.03222 0.00805 0.00508 0.00207
    40 0.03136 0.00726 0.00549 0
    80 0.00079 0.01140 0 0
    MCM-41 0.00076 0.00757 0 0
    下载: 导出CSV

    表  2  不同n(Si)/n(Zr)催化剂所得的产品油组分含量

    Table  2  Product oil component obtained by zeolites with different n(Si)/n(Zr)

    n(Si)/n(Zr) w/%
    linear paraffin oxy-compound isoparaffin cycloparaffin olefin aromatic
    10 23.22 1.13 0 0.82 2.74 72.09
    20 35.71 1.74 0 0 1.92 60.63
    40 47.13 0 3.42 0 0.74 48.71
    80 35.16 0 5.26 0 3.03 56.55
    下载: 导出CSV

    表  3  不同n(Si)/n(Zr)催化剂所得的产品油中饱和烷烃具体组分含量

    Table  3  Saturated alkanes component in the product oil derived from different n(Si)/n(Zr) catalysts

    Sample w/%
    n(Si)/n(Zr)=10 n(Si)/n(Zr)=20 n(Si)/n(Zr)=40 n(Si)/n(Zr)=80
    Nonane 5.11 6.34 6.34 5.50
    Decane 4.64 5.83 6.35 6.82
    Undecane 4.49 5.72 5.45 5.08
    Dodecane 0.60 2.19 3.42 5.53
    Tridecane 2.37 3.71 4.04 4.56
    Tetradecane 0.35 3.86 4.15 0
    Pentadecane 2.83 3.81 8.48 2.36
    Hexadecane 0.62 1.11 2.74 5.32
    Heptadecane 2.21 3.13 9.56 5.50
    Saturated alkanes 23.22 35.71 50.55 40.66
    下载: 导出CSV

    表  4  产品油中各芳香族化合物含量占芳烃总量百分比

    Table  4  Contents of aromatics in product oils as a percentage of total aromatics

    n(Si)/n(Zr) w/%
    monocyclic aromatic bicyclic aromatic tricyclic aromatic tetracyclic aromatic pentacyclic aromatic
    10 54.75 36.18 6.39 2.03 0.65
    20 42.65 48.69 5.57 3.09 0.00
    40 36.08 49.74 8.69 5.49 0.00
    80 31.39 50.28 9.22 8.58 0.52
    下载: 导出CSV
  • [1] SENSÖZ S, ANGIN D, YORGUN S. Influence of particle size on the pyrolysis of rapeseed (Brassica napus L. :Fuel properties of bio-oil[J]. Biomass Bioenergy, 2000, 19(4):271-279. doi: 10.1016/S0961-9534(00)00041-6
    [2] WANG Y, TAO H, LIU K, WU J, FANG Y. From biomass to advanced bio-fuel by catalytic pyrolysis/hydro-processing:Hydrodeoxygenation of bio-oil derived from biomass catalytic pyrolysis[J]. Bioresour Technol, 2012, 108(108):280-284. http://www.cabdirect.org/abstracts/20123132814.html
    [3] HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass:Chemistry, catalysts, and engineering[J]. Chem Rev, 2006, 106(9):4044-4098. doi: 10.1021/cr068360d
    [4] YANG Y, LUO H, TONG G, SMITH K J, TYE C T. Hydrodeoxygenation of phenolic model compounds over MoS2 catalysts with different structures[J]. Chin J Chem Eng, 2008, 16(5):733-739. doi: 10.1016/S1004-9541(08)60148-2
    [5] SENOL O İ, VILJAVA T R, KRAUSE A O I. Hydrodeoxygenation of aliphatic esters on sulphided NiMo/γ-Al2O3, and CoMo/γ-Al2O3, catalyst:The effect of water[J]. Catal Today, 2005, 106(1):186-189. http://www.sciencedirect.com/science/article/pii/S092058610500502X
    [6] COUMANS A E, HENSEN E J M. A model compound (methyl oleate, oleic acid, triolein) study of triglycerides hydrodeoxygenation over alumina-supported NiMo sulfide[J]. Appl Catal B:Environ, 2017, 201:290-301. doi: 10.1016/j.apcatb.2016.08.036
    [7] WANG W, LI L, TAN S, Wu K, ZHU G, LIU Y, XU Y, YANG Y. Preparation of NiS2//MoS2, catalysts by two-step hydrothermal method and their enhanced activity for hydrodeoxygenation of p-cresol[J]. Fuel, 2016, 179:1-9. doi: 10.1016/j.fuel.2016.03.068
    [8] WAWRZETZ A, PENG B, HRABAR A, JENTYS A, LEMONIDOU A A, LERCHER J A. Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol[J]. J Catal, 2010, 269(2):411-420. doi: 10.1016/j.jcat.2009.11.027
    [9] LEE E H, PARK R S, KIM H, PARK S H, JUNG S C, JEON J K, KIM S C, PARK T K. Hydrodeoxygenation of guaiacol over Pt loaded zeolitic materials[J]. J Ind Eng Chem, 2016, 37:18-21. doi: 10.1016/j.jiec.2016.03.019
    [10] DWIATMOKO A A, ZHOU L, KIM I, CHOI J W, SUH D J, HA J M. Hydrodeoxygenation of lignin-derived monomers and lignocellulose pyrolysis oil on the carbon-supported Ru catalysts[J]. Catal Today, 2016, 265:192-198. doi: 10.1016/j.cattod.2015.08.027
    [11] MONNIER J, SULIMMA H, DALAI A, CARAVAGGIO G. Hydrodeoxygenation of oleic acid and canola oil over alumina-supported metal nitrides[J]. Appl Catal A:Gen, 2010, 382(2):176-180. doi: 10.1016/j.apcata.2010.04.035
    [12] GHAMPSON I T, SEP ÚLVEDA C, GARCIA R, FREDERICK B G, WHEELER M C, ESCALONA N, DESISTO W J. Guaiacol transformation over unsupported molybdenum-based nitride catalysts[J]. Appl Catal A:Gen, 2012, 413(4):78-84. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0225182407/
    [13] TOBA M, ABE Y, KURAMOCHI H, OSAKO M, MOCHIZUKI T, YOSHIMURA Y. Hydrodeoxygenation of waste vegetable oil over sulfide catalysts[J]. Catal Today, 2011, 164(1):533-537. doi: 10.1016/j.cattod.2010.11.049
    [14] STINNER C, TANG Z, HAOUAS M, WEBER T, PRINS R. Preparation and 31P NMR characterization of nickel phosphides on silica[J]. J Catal, 2002, 208(2):456-466. doi: 10.1006/jcat.2002.3577
    [15] BLASCO T, CORMA A, NAVARRO M T, PARIENTE J P. Synthesis, characterization, and catalytic activity of Ti-MCM-41 structures[J]. Cheminform, 2010, 27(3):65-74. http://www.sciencedirect.com/science/article/pii/S0021951785712328
    [16] XU J, CHU W, LUO S. Synthesis and characterization of mesoporous V-MCM-41 molecular sieves with good hydrothermal and thermal stability[J]. J Mol Catal A:Chem, 2006, 256(1):48-56. http://www.ingentaconnect.com/content/el/13811169/2006/00000256/00000001/art00010
    [17] ZIOLEK M, NOWAK I, KILOS B, SOBCZAK I, DECYK P, TREJDA M, VOLTA J C. Template synthesis and characterisation of MCM-41 mesoporous molecular sieves containing various transition metal elements-TME (Cu, Fe, Nb, V, Mo)[J]. J Phy Chem Solids, 2004, 65(2):571-581. http://www.sciencedirect.com/science/article/pii/S0022369703004463
    [18] LIM S, CIUPARU D, YANG Y, DU G, PFEFFERLE L D, HALLER G L. Improved synthesis of highly ordered Co-MCM-41[J]. Microporous Mesoporous Mater, 2007, 101(1):200-206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0214076662
    [19] LAHA S C, MUKHERJEE P, SAINKAR S R, KUMAR R. Cerium containing MCM-41-Type mesoporous materials and their acidic and redox catalytic properties[J]. J Catal, 2002, 207(2):213-223. doi: 10.1006/jcat.2002.3516
    [20] CHEN L F, WANG J A, NOREÑA L E, AGUILAR J, NAVARRETE J, SALAS P, MONTOYA J A, ANGEL P D. Synthesis and physicochemical properties of Zr-MCM-41 mesoporous molecular sieves and Pt/H 3 PW 12 O 40/Zr-MCM-41 catalysts[J]. J Solid State Chem, 2007, 180(10):2958-2972. doi: 10.1016/j.jssc.2007.08.023
    [21] JIANG T S, ZHAO Q, YIN H B. Synthesis and characterization of Ni-mesoporous molecular sieves with high stability[J]. Inorg Mater, 2007, 43(1):30-34. doi: 10.1134/S0020168507010086
    [22] DONG Z, YE F, ZHANG H. Mesoporous structure stability of zirconium-doped mesoporous silica at elevated temperature[J]. Mater Lett, 2009, 63(27):2343-2345. doi: 10.1016/j.matlet.2009.08.003
    [23] QIAN Z, ZHOU X, LI Y, LI M, JIANG T, YIN H, CHANG S. Effect of the thermal and hydrothermal treatment on textural properties of Zr-MCM-41 mesoporous molecular sieve[J]. Appl Surf Sci, 2009, 255(12):6397-6403. doi: 10.1016/j.apsusc.2009.02.024
    [24] 李福祥, 张香娣, 李瑞丰, 谢克昌. Zr-MCM-41的合成及其表征[J].燃料化学学报, 2004, 32(4):471-474. doi: 10.3969/j.issn.0253-2409.2004.04.017

    LI Fu-xiang, ZHANG Xiang-ti, LI Rui-feng, XIE Ke-chang. Synthesis and characterization of mesoporous Zr-MCM-41[J]. J Fuel Chem Technol, 2004, 32(4):471-474. doi: 10.3969/j.issn.0253-2409.2004.04.017
    [25] 王威燕, 杨运泉, 罗和安, 杨彦松, 胡韬, 刘文英, 何兵, 钦柏豪.复合载体TiO2 -Al2O3的制备及其对Ni-Mo-S负载型催化剂加氢脱氧性能的影响[J].燃料化学学报, 2011, 39(12):924-929. doi: 10.3969/j.issn.0253-2409.2011.12.008

    WANG Wei-yan, YANG Yun-quan, LUO He-an, YANG Yan-song, HU Tao, LIU Wen-ying, HE Bing, QING Bai-hao. Preparation of TiO2-Al2O3 composite support and its performance in catalystic hydrodeoxygenation[J]. J Fuel Chem Technol, 2011, 39(12):924-929. doi: 10.3969/j.issn.0253-2409.2011.12.008
    [26] 任行涛.烷烃加氢异构化分子筛催化剂的研究[D].天津: 南开大学, 2005. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y804516

    REN Hang-tao. Study on hydrosiomerization of molecular sieve catalysts for alkanes[D]. Tianjin: Nankai University, 2005. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y804516
    [27] LI Z, GAO L, ZHENG S. Investigation of the dispersion of MoO3, onto the support of mesoporous silica MCM-41[J]. Appl Cataly A:Gen, 2002, 236(1):163-171. http://www.sciencedirect.com/science/article/pii/S0926860X02003022
    [28] 肖进兵, 罗有训, 罗根祥, 孙兆林, 辛勤, 李灿.氧化铝负载氮化钼的表面性质及加氢脱氢性能[J].催化学报, 2001, 22(6):571-574. doi: 10.3321/j.issn:0253-9837.2001.06.017

    XIAO Jin-bing, LUO You-xin, LUO Gen-xiang, SUN Zhao-lin, XIN Qin, LI Can. Surface properties and hydrogenation/dehydrogenation performance of alumina-supported molybdenum nitride[J]. Chin J Catal, 2001, 22(6):571-574. doi: 10.3321/j.issn:0253-9837.2001.06.017
    [29] 刘振林, 孟明, 伏义路, 姜明, 胡天斗, 谢亚宁, 刘涛.γ-Mo2N和分子筛负载的钼氮化物的结构表征[J].物理化学学报, 2001, 17(7):631-635. doi: 10.3866/PKU.WHXB20010712

    LIU Zheng-lin, MENG Ming, FU Yi-lu, JIANG Ming, HU Tian-dou, XIE Ya-ning, LIU Tao. Structure characterization of γ-Mo2N and Mo nitrides supported on zeolites[J]. Acta Phys-Chim Sin, 2001, 17(7):631-635. doi: 10.3866/PKU.WHXB20010712
    [30] HADA K, MASATOSHI NAGAI A, OMI S. Characterization and HDS activity of cobalt molybdenum nitrides[J]. J Phys Chem B, 2001, 105(19):217-219. doi: 10.1021/jp002133c
    [31] NAGATA T, KOBLMÜLLER G, BIERWAGEN O, GALLINAT C S, SPECK J S. Surface structure and chemical states of a-plane and c-plane InN films[J]. Appl Phy Lett, 2009, 95(13):132104-132104-3. doi: 10.1063/1.3238286
    [32] NAGAI M, JUMPEI TAKADA A, OMI S. XPS study of nitrided molybdena/titania catalyst for the hydrodesulfurization of dibenzothiophene[J]. J Phy Chem B, 1999, 103(46):10180-10188. doi: 10.1021/jp991856x
    [33] 刘维桥, 刘杰, 赵琳, 孙桂大, 吴义志, 张金媛. Mo2N催化剂的研究进展[J].抚顺石油学院学报, 2003, 23(3):18-21. doi: 10.3969/j.issn.1672-6952.2003.03.005

    LIU Wei-qiao, LIU Jie, ZHAO Lin, SUN Gui-da, WU Yi-zhi, ZHANG Jin-yuan. Advance on study of Mo2N catalyst[J]. J Fushun Pet Inst, 2003, 23(3):18-21. doi: 10.3969/j.issn.1672-6952.2003.03.005
    [34] 罗楠, 曹阳, 李进, 郭威, 赵子为. Ni2P/Zr-MCM-41催化剂的制备及其对麻疯树油加氢脱氧的催化性能[J].燃料化学学报, 2016, 44(1):76-83. doi: 10.3969/j.issn.0253-2409.2016.01.011

    LUO Nan, CAO Yang, LI Jin, GUO Wei, ZHAO Zi-wei. Preparation of Ni2P/Zr-MCM-41 catalyst and its performance in the hydrodeoxygenation of Jatropha curcas oil[J]. J Fuel Chem Technol, 2016, 44(1):76-83. doi: 10.3969/j.issn.0253-2409.2016.01.011
    [35] 杨树武, 徐江. SiO2负载的氮化钼催化剂的合成与表征[J].催化学报, 1998, V19(2):125-129. doi: 10.3321/j.issn:0253-9837.1998.02.006

    YANG Shu-wu, XU Jiang. Synthesis and characterization of SiO2 supported molybdenum nitride hydrodenitro genation catalysts[J]. Chin J Catal, 1998, V19(2):125-129. doi: 10.3321/j.issn:0253-9837.1998.02.006
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  44
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-17
  • 修回日期:  2018-09-15
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-11-10

目录

    /

    返回文章
    返回