留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同活化方法对天然硅铝矿物活化及分子筛合成效果的影响

刘海燕 孙鑫艳 郑涛 刘植昌

刘海燕, 孙鑫艳, 郑涛, 刘植昌. 不同活化方法对天然硅铝矿物活化及分子筛合成效果的影响[J]. 燃料化学学报(中英文), 2020, 48(3): 328-337.
引用本文: 刘海燕, 孙鑫艳, 郑涛, 刘植昌. 不同活化方法对天然硅铝矿物活化及分子筛合成效果的影响[J]. 燃料化学学报(中英文), 2020, 48(3): 328-337.
LIU Hai-yan, SUN Xin-yan, ZHENG Tao, LIU Zhi-chang. Effects of activation methods on the activation of natural aluminosilicate minerals and zeolite synthesis[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 328-337.
Citation: LIU Hai-yan, SUN Xin-yan, ZHENG Tao, LIU Zhi-chang. Effects of activation methods on the activation of natural aluminosilicate minerals and zeolite synthesis[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 328-337.

不同活化方法对天然硅铝矿物活化及分子筛合成效果的影响

基金项目: 

国家自然科学基金 21676297

详细信息
    通讯作者:

    刘海燕, E-mail: klc@cup.edu.cn

  • 中图分类号: TQ170.1

Effects of activation methods on the activation of natural aluminosilicate minerals and zeolite synthesis

Funds: 

The project was supported by the National Natural Science Foundation of China 21676297

  • 摘要: 选取了高岭土、累托土、蒙脱土和伊利石四种天然硅铝矿物,采用热活化、碱熔活化、亚熔盐活化及拟固相活化四种方法对上述四种矿物分别进行活化,对比了不同活化方法对天然硅铝矿物活化效果的影响。结果表明,亚熔盐活化及拟固相活化都具有良好的活化效果,而且能耗较低,明显优于热活化和碱熔活化。其中,拟固相活化由于能耗更低且更有利于实现工业操作,因此,是最具发展前景的天然硅铝矿物活化方法。对比四种天然硅铝矿物,高岭土、累托土及蒙脱土的晶相结构更容易被解聚,而伊利石稳定性更高,经亚熔盐活化及拟固相活化后,活化产物中也只有极少量的高反应活性的硅、铝物种,因此,伊利石不是理想的分子筛合成原料。
  • 图  1  高岭土(a)、累托土(b)、蒙脱土(c)和伊利石(d)的TG-DSC曲线

    Figure  1  TG-DSC curves of kaolin (a), rectorite (b), montmorillonite (c) and illite (d)

    图  2  活化前后高岭土、累托土、蒙脱土和伊利石的SEM照片

    Figure  2  SEM images of kaolin, rectorite, montmorillonite and illite before or after being activated

    图  3  活化前后高岭土(a)、累托土(b)、蒙脱土(c)和伊利石(d)的XRD谱图

    Figure  3  XRD patterns of kaolin (a), rectorite (b), montmorillonite (c) and illite (d) before or after being activated

    图  4  高岭土、累托土、蒙脱土和伊利石原土及其拟固相活化产物的Si 2p(a)、Al 2p(b)和O 1s(c) XPS谱图

    Figure  4  Si 2p (a), Al 2p (b) and O 1s (c) XPS spectra of kaolin, rectorite, montmorillonite, illite and their QSP-activated samples

    图  5  天然矿物原土及拟固相活化产物的29Si NMR和27Al NMR谱图

    Figure  5  29Si NMR and 27Al NMR spectra of natural minerals and their QSP-activated samples
    29Si NMR spectra of kaolin (a), rectorite (c), montmorillonite (e), illites (g);
    27Al NMR spectra of kaolin (b), rectorite (d), montmorillonite (f), illites (h)

    图  6  不同活化方式所得活化高岭土中活性铝硅的含量

    Figure  6  Contents of active Al2O3 and SiO2 of kaolin after being activated via different methods

    图  7  拟固相活化高岭土、累托土、蒙脱土和伊利石中活性铝硅的含量

    Figure  7  Contents of active Al2O3 and SiO2 of kaolin, rectorite, montmorillonite and illite after being QSP activated

    图  8  以不同拟固相活化天然硅铝矿物为原料所得合成产物的XRD谱图

    Figure  8  XRD patterns of the samples from different QSP-activated aluminosilicate minerals(S-QSP-KAO, S-QSP-REC, S-QSP-MMT-1 and S-QSP-ILL-1 are the samples obtained without supplemental alumina sources; S-QSP-MMT-2 and S-QSP-ILL-2 are the samples obtained with supplemental alumina sources)

    表  1  不同天然硅铝矿物的化学组成

    Table  1  Chemical composition of the different natural aluminosilicate minerals

    Natural mineral Component w/% SiO2/Al2O3
    (molar ratio)
    Na2O MgO Al2O3 SiO2 P2O5 K2O CaO TiO2 Fe2O3
    KAO 0.3 0.1 44.2 52.7 0.4 0.6 0.2 0.3 0.3 2.03
    REC 1.8 0.6 39.0 48.5 0.3 0.8 0.8 2.4 2.2 2.11
    MMT 0.1 0.4 40.1 55.8 0.04 2.3 - - 1.1 2.37
    ILL 1.6 0.3 20.8 72.9 0.03 3.7 - - 0.6 5.96
    下载: 导出CSV
  • [1] LIU Y, LIN C X, WU Y G. Characterization of red mud derived from a combined bayer process and bauxite calcination method[J]. J Hazard Mater, 2007, 146(1):255-261. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b181a8cbe09790f3e0a6c4555eaddcdd
    [2] ANDERSON M W, HOLMES S M, HANIF N, CUNDY C S. Hierarchical pore structures through diatom zeolitization[J]. Angew Chem Int Ed, 2000, 39(15):2707-2710. doi: 10.1002/1521-3773(20000804)39:15<2707::AID-ANIE2707>3.0.CO;2-M
    [3] LI T S, LIU H Y, FAN Y, YUAN P, SHI G, BI X T, BAO X J. Synthesis of zeolite Y from natural aluminosilicate minerals for fluid catalytic cracking application[J]. Green Chem, 2012, 14(12):3255-3259. doi: 10.1039/c2gc36101a
    [4] YUE Y Y, LIU H Y, YUAN P, LI T S, YU C, BI H, BAO X J. From natural aluminosilicate minerals to hierarchical ZSM-5 zeolites:A nanoscale depolymerization-reorganization approach[J]. J Catal, 2014, 319:200-210. doi: 10.1016/j.jcat.2014.08.009
    [5] DING J J, LIU H Y, YUAN P, SHI G, BAO X J. Catalytic properties of a hierarchical zeolite synthesized from a natural aluminosilicate mineral without the use of a secondary mesoscale template[J]. ChemCatChem, 2013, 5(8):2258-2269. doi: 10.1002/cctc.201300049
    [6] REYES C A R, WILLIAMS C D, ALARCON C O M. Synthesis of zeolite LTA from thermally treated kaolinite[J]. Rev Fac Ing Univ Antioquia, 2010, 53:30-41. http://cn.bing.com/academic/profile?id=cc3ea594cacde3f73c2925642d7c3718&encoded=0&v=paper_preview&mkt=zh-cn
    [7] CHO K, NA K, KIM J, TERASAKI O, RYOO R. Zeolite synthesis using hierarchical structure-directing surfactants:Retaining porous structure of initial synthesis gel and precursors[J]. Chem Mater, 2012, 24(14):2733-2738. doi: 10.1021/cm300841v
    [8] LIU H Y, SHEN T, LI T S, YUAN P, SHI G, BAO X J. Green synthesis of zeolites from a natural aluminosilicate mineral rectorite:Effects of thermal treatment temperature[J]. Appl Clay Sci, 2014, 90:53-60. doi: 10.1016/j.clay.2014.01.006
    [9] LIU H Y, SHEN T, WANG W, LI T S, YUE Y Y, BAO X J. From natural aluminosilicate minerals to zeolites:Synthesis of ZSM-5 from rectorites activated via different methods[J]. Appl Clay Sci, 2015, 115:201-211. doi: 10.1016/j.clay.2015.07.040
    [10] YANG J B, LIU H Y, DIAO H J, LI B S, YUE Y Y, BAO X J. A Quasi-solid-phase approach to activate natural minerals for zeolite synthesis[J]. ACS Sustainable Chem Eng, 2017, 5(4):3233-3242. doi: 10.1021/acssuschemeng.6b03031
    [11] YUE Y Y, LIU H Y, YUAN P, YU C, BAO X J. One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3[J]. Sci Rep, 2015, 5:9270-9280. doi: 10.1038/srep09270
    [12] WHITE C E, PROVIS J L, THOMAS P, RILEY D P, DEVENTER J J. Density functional modeling of the local structure of kaolinite subjected to thermal dehydroxylation[J]. J Phys Chem, 2010, 114(14):4988-4996. doi: 10.1021/jp911108d
    [13] RíOS C A, WILLIAMS C D, FULLEN M A. Nucleation and growth history of zeolite LTA synthesized from kaolinite by two different methods[J]. Appl Clay Sci, 2009, 42(3):446-454. http://cn.bing.com/academic/profile?id=d40d974b1c20c18ef9c8b2277e60ac04&encoded=0&v=paper_preview&mkt=zh-cn
    [14] LIU Y, PINNAVAIA T J. Metakaolin as a reagent for the assembly of mesoporous aluminosilicates with hexagonal, cubic and wormhole framework structures from proto-faujasitic nanoclusters[J]. J Mater Chem, 2004, 14(23):3416-3420. doi: 10.1039/b410337h
    [15] SAIKIA N. Characterization, beneficiation and utilization of a kaolinite clay from Assam, India[J]. Appl Clay Sci, 2003, 24(1/2):93-103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d6b7416e2d1df83cae115f0e2ccbc7b7
    [16] WEI B Y, LIU H Y, LI T S, CAO L Y, FAN Y, BAO X J. Natural rectorite mineral:A promising substitute of kaolin for in-situ synthesis of fluid catalytic cracking catalysts[J]. AIChE J, 2010, 56(11):2913-2922. doi: 10.1002/aic.12195
    [17] GARRELS R M. Montmorillonite/illite stability diagrams[J]. Clays Clay Miner, 1984, 32(3):161-166. doi: 10.1346/CCMN.1984.0320301
    [18] HE C L, MAKOVICKY E, ØSBØCK B. Thermal stability and pozzolanic activity of calcined illite[J]. Appl Clay Sci, 1995, 9(5):337-354. doi: 10.1016/0169-1317(94)00033-M
    [19] OKADA K, KAMESHIMA Y, YASUMORI A. Chemical shifts of silicon X-ray photoelectron spectra by polymerization structures of silicates[J]. J Am Ceram Soc, 1998, 81(7):1970-1972. http://cn.bing.com/academic/profile?id=afe634467c4b53134560999f38f6c722&encoded=0&v=paper_preview&mkt=zh-cn
    [20] BARR T L, SEAL S, WOZNIAK K, KLINOWSKI J. ESCA studies of the coordination state of aluminium in oxide environments[J]. J Chem Soc Faraday Trans, 1997, 93(1):181-186. doi: 10.1039/a604061f
    [21] LIPPMAA E, MÄGI M, SAMOSON A, ENGELHARDT G, GRIMMER A. Structural studies of silicates by solid-state high-resolution silicon-29 NMR[J]. J Am Chem Soc, 1980, 102(15):4889-4893. doi: 10.1021/ja00535a008
    [22] BERTERMANN R, KROGER N, TACKE R. Solid-state 29Si MAS NMR studies of diatoms:Structural characterization of biosilica deposits[J]. Anal Bioanal Chem, 2003, 375(5):630-634. doi: 10.1007/s00216-003-1769-5
    [23] MADANI A, AZNAR A, SANZ J, SERRATOSA J. 29Si and 27Al NMR study of zeolite formation from alkali-leached kaolinites:Influence of thermal preactivation[J]. J Phys Chem, 1990, 94(2):760-765. doi: 10.1021/j100365a046
    [24] KOUASSI S, ANDJI J, BONNET J, ROSSIGNOL S. Dissolution of waste glasses in high alkaline solutions[J]. Ceram Silik, 2010, 54(3):235-240. https://www.irsm.cas.cz/materialy/cs_content/2010/Kouassi_CS_2010_0000.pdf
    [25] ENGELHARDT G. Silicon-29 NMR of Solid Silicates[M]. New York:John Wiley & Sons Ltd, 2007:8-36.
    [26] ROCHA J, KLINOWSKI J. 29Si and 27Al magic-angle-spinning NMR studies of the thermal transformation of kaolinite[J]. Phys Chem Miner, 1990, 17(2):179-186. doi: 10.1007/BF00199671
    [27] MüLLER D, GESSNER W, BEHRENS H J, SCHELER G. Determination of the aluminium coordination in aluminium-oxygen compounds by solid-state high-resolution 27Al NMR[J]. Chem Phys Lett, 1981, 79(1):59-62. doi: 10.1016/0009-2614(81)85288-8
    [28] CHANDRASEKHAR S. Influence of metakaolinization temperature on the formation of zeolite 4A from kaolin[J]. Clay Miner, 1996, 31(2):253-261. doi: 10.1180/claymin.1996.031.2.11
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  240
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-03
  • 修回日期:  2020-02-22
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-03-10

目录

    /

    返回文章
    返回