留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu/Ni负载型Beta分子筛催化剂的乙醇水蒸气重整制氢催化性能研究

赵燕凌 代蓉 郑子良 王诗瑶 孙晨 李星 谢鲜梅

赵燕凌, 代蓉, 郑子良, 王诗瑶, 孙晨, 李星, 谢鲜梅. Cu/Ni负载型Beta分子筛催化剂的乙醇水蒸气重整制氢催化性能研究[J]. 燃料化学学报(中英文), 2017, 45(11): 1392-1400.
引用本文: 赵燕凌, 代蓉, 郑子良, 王诗瑶, 孙晨, 李星, 谢鲜梅. Cu/Ni负载型Beta分子筛催化剂的乙醇水蒸气重整制氢催化性能研究[J]. 燃料化学学报(中英文), 2017, 45(11): 1392-1400.
ZHAO Yan-ling, DAI Rong, ZHENG Zi-liang, WANG Shi-yao, SUN Chen, LI Xing, XIE Xian-mei. Beta zeolite supported Cu/Ni catalyst for hydrogen production through ethanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2017, 45(11): 1392-1400.
Citation: ZHAO Yan-ling, DAI Rong, ZHENG Zi-liang, WANG Shi-yao, SUN Chen, LI Xing, XIE Xian-mei. Beta zeolite supported Cu/Ni catalyst for hydrogen production through ethanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2017, 45(11): 1392-1400.

Cu/Ni负载型Beta分子筛催化剂的乙醇水蒸气重整制氢催化性能研究

基金项目: 

国家自然科学基金 51541210

山西省研究生创新项目 2016BY051

详细信息
  • 中图分类号: TQ426

Beta zeolite supported Cu/Ni catalyst for hydrogen production through ethanol steam reforming

Funds: 

the National Natural Science Foundation of China 51541210

Innovation Project of Shanxi Graduate Education 2016BY051

More Information
    Corresponding author: XIE Xian-mei, Tel:+863516018564, E-mail:xxmsxty@sina.com
  • 摘要: 采用等体积浸渍的方式,在全硅Beta分子筛载体上担载Cu、Ni活性组分,制备出一系列xCuyNi-ABZ多功能乙醇水蒸气重整制氢催化剂。通过XRD、TEM、SEM-EDX以及XPS等多种表征手段,研究催化剂的结构特性、活性组分含量等因素对催化性能的影响,依据反应产物分布,揭示其作用机理。结果表明,以Beta分子筛为载体可促使活性组分以纳米颗粒的形式高度分散于载体表面,并且存在较强的载体-金属作用力。与传统SiO2为载体催化剂相比,2.5Cu2.5Ni-ABZ催化剂具备良好的乙醇水蒸气重整催化性能,当反应温度为450 ℃,实现100%的乙醇转化率和67.23%的H2选择性,且副产物CO(4.14%)、CH4(5.65%)含量相对较低。这可归因于Cu和Ni活性组分间的高效协同作用,Cu具有良好的乙醇脱氢性能,生成反应中间体乙醛;在反应过程中,乙醛的重整和分解是两个受温度影响的竞争反应,Ni组分利用其较强的C-C键断裂能力,随温度的升高,乙醛重整反应占主导作用,生成目标产物H2。通过对反应后样品分析表明,2.5Cu2.5Ni-ABZ催化剂具备良好的抗烧结和抗积炭催化性能。
  • 图  1  xCuyNi-ABZ和2.5Cu2.5Ni-SiO2催化剂的XRD谱图

    Figure  1  XRD spectra of xCuyNi-ABZ and 2.5Cu2.5Ni-SiO2 catalysts

    图  2  全硅Beta分子筛的TEM照片(a),2.5Cu2.5Ni-ABZ催化剂的SEM照片(b)及表面局部EDX分析图(c)

    Figure  2  TEM image of all-silicon Beta zeolite (a), SEM image of 2.5Cu2.5Ni-ABZ catalyst (b) and EDX spectra of the sample (c)

    图  3  还原后xCuyNi-ABZ催化剂的Cu 2p和Ni 2p XPS谱图

    Figure  3  (a) Cu 2p and (b) Ni 2p X-ray photoelectron spectra of reduced xCuyNi-ABZ catalysts

    图  4  催化剂的乙醇转化率和产物选择性随反应温度的变化

    Figure  4  Variation of ethanol conversion and product selectivity as a function of reaction temperature over

    (a): 2.5Cu2.5Ni-ABZ; (b): 2.5Cu2.5Ni-SiO2; (c): 5Cu-ABZ; (d): 5Ni-ABZ : H2; : CO; : CH4; : CO2; : CH3CHO; : C2H6OH

    图  5  2.5Cu2.5Ni-ABZ催化剂的ESR反应机制示意图

    Figure  5  Proposed reaction pathway of ESR reaction over 2.5Cu2.5Ni-ABZ catalyst

    图  6  450 ℃反应温度下2.5Cu2.5Ni-ABZ和2.5Cu2.5Ni-SiO2催化剂的15 h稳定性

    Figure  6  Variation of ethanol conversion and product selectivity as a function of the reaction time over (a)2.5Cu2.5Ni-ABZ and (b)2.5Cu2.5Ni-SiO2 catalysts at 450 ℃ for 15 h

    —●—: H2; —◆—: CO; —▼—: CH4; —▲—: CO2; —○—: C2H4O; —■—: C2H5OH

    图  7  反应后2.5Cu2.5Ni-ABZ和2.5Cu2.5Ni-SiO2催化剂的XRD谱图

    Figure  7  XRD spectra of spent 2.5Cu2.5Ni-ABZ and 2.5Cu2.5Ni-SiO2 catalysts

    图  8  反应后2.5Cu2.5Ni-ABZ和2.5Cu2.5Ni-SiO2催化剂的TG曲线

    Figure  8  TG curves of spent 2.5Cu2.5Ni-ABZ and 2.5Cu2.5Ni-SiO2 catalysts

    表  1  xCuyNi-ABZ催化剂的织构性质

    Table  1  Structural parameters of xCuyNi-ABZ catalysts

    Catalyst ABET/(m2·g-1)a vmicro/(cm3·g-1)b dmicro/nmb
    All-silica Beta 558 0.21 0.66
    5Ni-ABZ 497 0.19 0.68
    2.5Cu2.5Ni-ABZ 528 0.20 0.64
    5Cu-ABZ 521 0.19 0.65
    a: BET method; b: t-plot method
    下载: 导出CSV
  • [1] FANG W, PAUL S, CAPRON M, BIRADAR A V, UMBARKAR S B, DONGARE M. K., DUMEIGNIL F., JALOWIECKI-DUHAMEL L. Highly loaded well dispersed stable Ni species in NixMg2AlOy nanocomposites:Application to hydrogen production from bioethanol[J]. Appl Catal B:Environ, 2015, 166:485-496. http://www.sciencedirect.com/science/article/pii/s0926337314007656
    [2] CROWLEY S, CASTALDI M J. Mechanistic insights into catalytic ethanol steam reforming using lsotope-labeled reactants[J]. Angew Chem Int Edit, 2016, 55(36):10650-10655. doi: 10.1002/anie.201604388
    [3] XU W, LIU Z, JOHNSTON-PECK A C, SENANAYAKE S D, ZHOU G, STACCHIOLA D, STACH E A, RODRIGUEZ J A. Steam reforming of ethanol on Ni/CeO2:Reaction pathway and interaction between Ni and the CeO2 support[J]. ACS Catal, 2013, 3(5):975-984. doi: 10.1021/cs4000969
    [4] ROSSETTI I, LASSO J, NICHELE V, SIGNORETTOB M, FINOCCHIOC E, RAMISC G, MICHELED A D. Silica and zirconia supported catalysts for the low-temperature ethanol steam reforming[J]. Appl Catal B:Environ, 2014, 150:257-267. http://www.sciencedirect.com/science/article/pii/S0926337313007571
    [5] CORONRLA L, MÚNERAA J F, TARDITIA A M, MORENOB M S, CORNAGLIA L M. Hydrogen production by ethanol steam reforming over Rh nanoparticles supported on lanthana/silica systems[J]. Appl Catal B:Environ, 2014, 160:254-266. http://www.sciencedirect.com/science/article/pii/S0926337314003014
    [6] RAMOSA A C, MONTINIB T, LORENZUTB B, TROIANIA H, GENNARIA F C, GRAZIANIB M, FORNASIERO P. Hydrogen production from ethanol steam reforming on M/CeO2/YSZ (M=Ru, Pd, Ag) nanocomposites[J]. Catal Today, 2012, 180(1):96-104. doi: 10.1016/j.cattod.2011.03.068
    [7] CHEN Y, SHAO Z, XU N. Ethanol steam reforming over Pt catalysts supported on CexZr1-xO2 prepared via a glycine nitrate process[J]. Energy Fuels, 2008, 22(3):1873-1879. doi: 10.1021/ef700576f
    [8] SUN J, QIU X, WU F. H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 catalysts for fuel-cell application[J]. Int J Hydrogen Energy, 2005, 30(4):437-445. doi: 10.1016/j.ijhydene.2004.11.005
    [9] LIU Z, SENANAYAKE S D, RODRIGUEZ J A. Elucidating the interaction between Ni and CeOx in ethanol steam reforming catalysts:A perspective of recent studies over model and powder systems[J]. Appl Catal B:Environ, 2016, 197:184-197. doi: 10.1016/j.apcatb.2016.03.013
    [10] HARYANTO A, FERNANDO S, MURALI N, ADHIKARI S. Current status of hydrogen production techniques by steam reforming of ethanol:a review[J]. Energy Fuels, 2005, 19(5):2098-2106. doi: 10.1021/ef0500538
    [11] MORAES T S, NETO R C R, RIBEIRO M C, MATTOS L V, KOURTELESIS M, LADAS S, VERYKIOS X, NORONHA F B. The study of the performance of PtNi/CeO2-nanocube catalysts for low temperature steam reforming of ethanol[J]. Catal Today, 2015, 242:35-49. doi: 10.1016/j.cattod.2014.05.045
    [12] NICHELE V, SIGNORETTO M, PINNA F, COMPAGNONI E G M, ROSSETTI I, CRUCIANI G, MICHELE A D. Bimetallic Ni-Cu catalysts for the low-temperature ethanol steam reforming:Importance of metal-support interactions[J]. Catal Lett, 2015, 145(2):549-558. doi: 10.1007/s10562-014-1414-2
    [13] CONTRERAS J, SALMONES J, COLÍN-LUNA J, NUÑO L, QUINTANA B, CÓRDOVA I, ZEIFERTB B, TAPIA C, FUENTES G A. Catalysts for H2 production using the ethanol steam reforming (a review)[J]. Int J Hydrogen Energy, 2014, 39(33):18835-18853. doi: 10.1016/j.ijhydene.2014.08.072
    [14] CAMPOS-SKROBOT F C, RIZZO-DOMINGUES R C P, FERNANDES-MACHADO N R C, CANTÃO M P. Novel zeolite-supported rhodium catalysts for ethanol steam reforming[J]. J Power Sources, 2008, 183(2):713-716. doi: 10.1016/j.jpowsour.2008.05.066
    [15] LANG L, ZHAO S, YIN X. Catalytic activities of K-modified zeolite ZSM-5 supported rhodium catalysts in low-temperature steam reforming of bioethanol[J]. Int J Hydrogen Energy, 2015, 40(32):9924-9934. doi: 10.1016/j.ijhydene.2015.06.016
    [16] DA COSTA-SERRA J F, NAVARRO M T, REY F, CHICA A. Bioethanol steam reforming on Ni-based modified mordenite. Effect of mesoporosity, acid sites and alkaline metals[J]. Int J Hydrogen Energy, 2012, 37(8):7101-7108. doi: 10.1016/j.ijhydene.2011.10.086
    [17] INOKAWA H, NISHIMOTO S, KAMESHIMA Y, MIYAKE M. Promotion of H2 production from ethanol steam reforming by zeolite basicity[J]. Int J Hydrogen Energy, 2011, 36(23):15195-15202. doi: 10.1016/j.ijhydene.2011.08.099
    [18] KIM T W, KIM S Y, KIM J C, KIMB Y, RYOOB R, KIMA C-U. Selective p-xylene production from biomass-derived dimethylfuran and ethylene over zeolite beta nanosponge catalysts[J]. Appl Catal B:Environ, 2016, 185:100-109. doi: 10.1016/j.apcatb.2015.11.046
    [19] SERRANO D, GRIEKEN R V, SANCHEZ P, SANZ R, RODRIÓGUEZ L. Crystallization mechanism of all-silica zeolite beta in fluoride medium[J]. Microporous Mesoporous Mater, 2001, 46(1):35-46. doi: 10.1016/S1387-1811(01)00272-4
    [20] SAW E T, OEMAR U, TAN X R, DUB Y, BORGNAB A, HIDAJATA K, KAWI S. Bimetallic Ni-Cu catalyst supported on CeO2 for high-temperature water-gas shift reaction:Methane suppression via enhanced CO adsorption[J]. J Catal, 2014, 314:32-46. doi: 10.1016/j.jcat.2014.03.015
    [21] VIZCAÍNO A J, CARRERO A, CALLES J A. Hydrogen production by ethanol steam reforming over Cu-Ni supported catalysts[J]. Int J Hydrogen Energy, 2007, 32(10):1450-1461. http://www.sciencedirect.com/science/article/pii/S0360319906005040
    [22] ZHENG Z, YANG D, LI T, YIN X M, WANG S Y, WU X, AN X, XIE X M. A novel BEA-type zeolite core-shell multiple catalyst for hydrogen-rich gas production from ethanol steam reforming[J]. Catal Sci Technol, 2016, 6(14):5427-5439. doi: 10.1039/C6CY00119J
    [23] BREEN J P, BURCH R, COLEMAN H M. Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications[J]. Appl Catal B:Environ, 2002, 39(1):65-74. doi: 10.1016/S0926-3373(02)00075-9
    [24] GARBARINO G, WANG C, VALSAMAKIS I, CHITSAZAN S, RIANIC P, FINOCCHIO E, FLYTZANI-STEPHANOPOULOS M, BUSC G. A study of Ni/Al2O3 and Ni-La/Al2O3 catalysts for the steam reforming of ethanol and phenol[J]. Appl Catal B:Environ, 2015, 174:21-34. http://www.sciencedirect.com/science/article/pii/S0926337315000909
    [25] KALAMARAS C M, PANAGIOTOPOULOU P, KONDARIDES D I, CHITSAZANA S, RIANIC P, FINOCCHIOA E, FLYTZANI-STEPHANOPOULOSB M, BUSCA G. Kinetic and mechanistic studies of the water-gas shift reaction on Pt/TiO2 catalyst[J]. J Catal, 2009, 264(2):117-129. doi: 10.1016/j.jcat.2009.03.002
    [26] CALLES J A, CARRERO A, VIZCAÍNO A J. Effect of Ce and Zr addition to Ni/SiO2 catalysts for hydrogen production through ethanol steam reforming[J]. Catal, 2015, 5(1):58-76. doi: 10.3390/catal5010058
    [27] JEONG D W, NA H S, SHIM J O, JANG W J, ROH H S, JUNG U H, YOON W L. Hydrogen production from low temperature WGS reaction on co-precipitated Cu-CeO2 catalysts:An optimization of Cu loading[J]. Int J Hydrogen Energy, 2014, 39(17):9135-9142. doi: 10.1016/j.ijhydene.2014.04.005
    [28] KUBACKA A, FERNÁNDEZ-GARCÍA M, MARTÍNEZ-ARIAS A. Catalytic hydrogen production through WGS or steam reforming of alcohols over Cu, Ni and Co catalyst[J]. Appl Catal A:Gen, 2016, 518:2-17. doi: 10.1016/j.apcata.2016.01.027
    [29] ZENG G, LI Y, OLSBYE U. Kinetic and process study of ethanol steam reforming over Ni/Mg(Al)O catalysts:The initial steps[J]. Catal. Today, 2016, 259:312-322. doi: 10.1016/j.cattod.2015.07.006
    [30] MATTOS L V, JACOBS G, DAVIS B H, NORONHA F B. Production of hydrogen from ethanol:Review of reaction mechanism and catalyst deactivation[J]. Chem Rev, 2012, 112(7):4094-4123. doi: 10.1021/cr2000114
    [31] ZHAO X, LU G. Modulating and controlling active species dispersion over Ni-Co bimetallic catalysts for enhancement of hydrogen production of ethanol steam reforming[J]. Int J Hydrogen Energy, 2016, 41(5):3349-3362. doi: 10.1016/j.ijhydene.2015.09.063
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  56
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-17
  • 修回日期:  2017-09-17
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-11-10

目录

    /

    返回文章
    返回