留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改性Ni/γ-Al2O3催化剂的电催化甲烷水蒸气重整的研究

侯悦 张荣俊 陆强 杨少霞 李明丰

侯悦, 张荣俊, 陆强, 杨少霞, 李明丰. 基于改性Ni/γ-Al2O3催化剂的电催化甲烷水蒸气重整的研究[J]. 燃料化学学报(中英文), 2018, 46(4): 489-499.
引用本文: 侯悦, 张荣俊, 陆强, 杨少霞, 李明丰. 基于改性Ni/γ-Al2O3催化剂的电催化甲烷水蒸气重整的研究[J]. 燃料化学学报(中英文), 2018, 46(4): 489-499.
HOU Yue, ZHANG Rong-jun, LU Qiang, YANG Shao-xia, LI Ming-feng. Research on electro-catalytic steam reforming of methane with modified Ni/γ-Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, 2018, 46(4): 489-499.
Citation: HOU Yue, ZHANG Rong-jun, LU Qiang, YANG Shao-xia, LI Ming-feng. Research on electro-catalytic steam reforming of methane with modified Ni/γ-Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, 2018, 46(4): 489-499.

基于改性Ni/γ-Al2O3催化剂的电催化甲烷水蒸气重整的研究

基金项目: 

中央高校基本科研业务费 2016YQ05

中央高校基本科研业务费 2015ZZD02

北京市科技新星 Z171100001117064

详细信息
  • 中图分类号: TQ203.2

Research on electro-catalytic steam reforming of methane with modified Ni/γ-Al2O3 catalysts

Funds: 

Fundamental Research Funds for the Central Universities 2016YQ05

Fundamental Research Funds for the Central Universities 2015ZZD02

Beijing Nova Program Z171100001117064

More Information
  • 摘要: 提出了电催化作用下甲烷水蒸气催化重整的新工艺。基于工业常规Ni基催化剂,采用等体积浸渍法,以Ni为活性组分,γ-Al2O3为载体,MgO、CaO为助剂,制备了Ni/γ-Al2O3、Ni-MgO/γ-Al2O3和Ni-CaO/γ-Al2O3催化剂,考察了电流强度、重整温度、水蒸气与甲烷的物质的量比(水碳比,S/C)对不同催化剂的CH4转化率、H2产率、CO选择性和催化剂稳定性的影响。结果表明,电催化工艺有着良好的普适性,电流的引入能够提升CH4转化率、增加H2产率,尤其在低温下电流的促进作用显著。在三种催化剂中,Ni-CaO/γ-Al2O3催化效果最佳,在电流为4.5 A、S/C为3、重整温度为700℃时,CH4转化率就高达95%以上。稳定性测试表明,电流的通入还能显著提高催化剂的稳定性,延缓催化剂的积炭失活。通过对催化剂的分析表征,发现电流的通入提升了催化剂中NiO的还原程度,同时抑制了反应过程中NiCx向石墨炭的转化,从而可延缓催化剂因积炭覆盖反应活性位点而造成的失活。
  • 图  1  电催化甲烷水蒸气重整实验装置示意图

    Figure  1  Schematic diagram of the experimental setup for electro-catalytic steam reforming of methane

    图  2  不同温度条件下电流强度对CH4转化率的影响

    Figure  2  Effect of electric current intensity on CH4 conversion at different temperatures

    (S/C=3, space velocity 10000 h-1)

    图  3  不同温度条件下电流强度对H2产率及CO选择性的影响

    Figure  3  Effect of electric current intensity on H2 yield (a) and CO selectivity (b) at different temperatures

    (S/C=3, space velocity 10000 h-1)

    图  4  不同催化剂电催化作用下不同S/C对CH4转化率的影响

    Figure  4  Effect of S/C on CH4 conversion over different catalysts

    (temperature 700 ℃, space velocity 10000 h-1)

    图  5  700和650 ℃下催化剂的稳定性测试

    Figure  5  Stability tests of the catalysts at 700 ℃ (a) and 650 ℃ (b)

    (S/C=3, space velocity 10000 h-1)
    (a): 700 ℃; (b): 650 ℃

    图  6  催化剂的XRD谱图

    Figure  6  XRD patterns of the catalysts

    Ⅰ: fresh catalyst (non-reduced); Ⅱ: spent catalyst (current 0 A); Ⅲ: spent catalyst (current 4.5 A)

    图  7  催化剂的Ni 2p XPS谱图

    Figure  7  Ni 2p XPS spectra of the catalysts

    Ⅰ: fresh catalyst; Ⅱ: spent catalyst (current 0 A); Ⅲ: spent catalyst (current 4.5 A)

    图  8  催化剂的C 1s XPS谱图

    Figure  8  C 1s XPS spectra of the catalysts

    Ⅰ: spent catalyst (current 0 A); Ⅱ: spent catalyst (current 4.5 A)

    表  1  稳定性测试过程中催化效率的下降

    Table  1  The decline in catalytic efficiency during stability test

    Catalyst t /℃ I /A Decline in efficiency/%
    10Ni/γ-Al2O3 700 0 9.6
    700 4.5 5.6
    10Ni-3MgO/γ-Al2O3 700 0 7.1
    700 4.5 3.3
    10Ni-3CaO/γ-Al2O3 650 0 4.1
    650 4.5 1.6
    下载: 导出CSV

    表  2  稳定性测试后催化剂的含碳量

    Table  2  Carbon contents of the catalysts after stability tests

    Catalyst I /A C w/% Decrease /%
    10Ni/γ-Al2O3 0 0.89 20.2
    4.5 0.71
    10Ni-3MgO/γ-Al2O3 0 0.39 15.4
    4.5 0.33
    10Ni-3CaO/γ-Al2O3 0 0.52 28.8
    4.5 0.37
    下载: 导出CSV

    表  3  催化剂的微观结构性质

    Table  3  Microstructure properties of the catalysts

    Catalyst Condition BET surface
    A/(m2·g-1)
    Pore volume
    v/(cm3·g-1)
    Average pore
    diameter d/nm
    Ni0
    particle size *d/nm
    10Ni/γ-Al2O3 fresh catalyst 118.9 0.64 21.6 (NiO)
    0 A reformed 104.6 0.57 21.9 18.6
    4.5A reformed 106.1 0.56 21.1 13.5
    10Ni-3MgO/γ-Al2O3 fresh catalyst 114.3 0.60 21.0 (NiO)
    0 A reformed 105.2 0.56 21.3 11.5
    4.5 A reformed 107.8 0.53 19.9 8.9
    10Ni-3CaO/ γ-Al2O3 fresh catalyst 107.8 0.60 22.1 (NiO)
    0 A reformed 98.2 0.52 21.4 12.4
    4.5 A reformed 103.0 0.53 20.7 11.0
    *: the average particle size of Ni is calculated using Scherrer formula based on the XRD diffraction peaks
    下载: 导出CSV

    表  4  Ni0所占百分比(Ni0/(Ni0+Ni2+))

    Table  4  Percentage of Ni0 (Ni0/(Ni0+Ni2+))

    Catalyst I (0 A) /% I (4.5 A) /%
    10Ni/γ-Al2O3 23.8 24.0
    10Ni-3MgO/γ-Al2O3 17.3 35.8
    10Ni-3CaO/γ-Al2O3 25.1 29.0
    下载: 导出CSV

    表  5  NiCx和石墨炭所占百分比

    Table  5  Percentages of NiCx and graphite carbon

    Catalyst NiCx /% Graphite carbon /%
    I (0A) I (4.5A) I (0A) I (4.5A)
    10Ni/
    γ-Al2O3
    14.3 20.8 69.1 62.2
    10Ni-3MgO/
    γ-Al2O3
    58.4 65.7 27.6 22.4
    10Ni-3CaO/
    γ-Al2O3
    47.9 54.0 40.0 35.2
    下载: 导出CSV
  • [1] LULIANELLI A, LIGUORI S, WILCOX J, BASILE A. Advances on methane steam reforming to produce hydrogen through membrane reactors technology:A review[J]. Catal Rev, 2016, 13:1-35. doi: 10.1080/01614940.2015.1099882
    [2] 王东旭, 肖显斌, 李文艳.乙酸蒸汽催化重整制氢的研究进展[J].化工进展, 2017, 36(5):1658-1662. http://www.cnki.com.cn/Article/CJFDTotal-HGJZ201705016.htm

    WANG Dong-xu, XIAO Xian-bin, LI Wen-yan. A review of literatures on catalytic steam reforming of acetic acid for hydrogen production[J]. Chem Ind Eng Prog, 2017, 36(5):1658-1662. http://www.cnki.com.cn/Article/CJFDTotal-HGJZ201705016.htm
    [3] 孙杰, 孙春文, 李吉刚, 周添, 董中朝, 陈立泉.甲烷水蒸气重整反应研究进展[J].中国工程科学, 2013, 15(2):98-106. http://or.nsfc.gov.cn/bitstream/00001903-5/292015/1/1000006899498.pdf

    SUN Jie, SUN Chun-wen, LI Ji-gang, ZHOU Tian, DONG Zhong-chao, CHEN Li-quan. Research on the steam reforming of methane[J]. Chin Eng Sci, 2013, 15(2):98-106. http://or.nsfc.gov.cn/bitstream/00001903-5/292015/1/1000006899498.pdf
    [4] 陈曦. 镍基催化剂制备及在甲烷水蒸气重整反应中的应用[D]. 辽宁: 大连理工大学, 2014.

    CHEN Xi. Preparation of Ni-based catalysts and application in steam reforming of methane[D]. Liaoning: Dalian University of Technology, 2014.
    [5] ARKATOVA L A. The deposition of coke during carbon dioxide reforming of methane over intermetallides[J]. Catal Today, 2010, 157:170-176. doi: 10.1016/j.cattod.2010.03.003
    [6] IGLESIAS I, BARONETTI G, MARINO F. Nickel-based doped ceria-supported catalysts for steam reforming of methane at mild conditions[J]. Energy Sources, 2017, 39(2):129-133. doi: 10.1080/15567036.2016.1214639
    [7] LIAN J, FANG X Z, LIU W M, HUANG Q, SUN Q K, WANG H M, WANG X, ZHOU W F. Ni Supported on LaFeO3 perovskites for methane steam reforming:On the promotional effects of plasma treatment in H2-Ar atmosphere[J]. Top Catal, 2017, DOI: 10.1007/s11244-017-0748-6.
    [8] 赵云莉, 吕永康, 常丽萍, 鲍卫仁.助剂MgO、CaO对甲烷水蒸气重整Ni/γ-Al2O3催化性能的影响[J].燃料化学学报, 2010, 38(2):218-222. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17566.shtml

    ZHAO Yun-li, LÜ Yong-kang, CHANG Li-ping, BAO Wei-ren. Effects of MgO and CaO on properties of Ni/γ-Al2O3 catalyst for the reforming of methane and steam[J]. J Fuel Chem Technol, 2010, 38(2):218-222. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17566.shtml
    [9] ALI S, AL-MARRI M, G. ABDELMONEIM A, KUMAR A, M. KHADER M. Catalytic evaluation of nickel nanoparticles in methane steam reforming[J]. Int J Hydrogen Energy, 2016, 41:22876-22885. doi: 10.1016/j.ijhydene.2016.08.200
    [10] CHEN Y Q, YUAN L X, YE T Q, QIU S B, ZHU X F, TORIMOTO Y, YAMAMOTO M, LI Q X. Effects of current upon hydrogen production from electrochemical catalytic reforming of acetic acid[J]. Int J Hydrogen Energy, 2009, 34(4):1760-1770. doi: 10.1016/j.ijhydene.2008.12.044
    [11] YE T Q, YUAN L X, CHEN Y Q, KAN T, TU J, ZHU X F, TORIMOTO Y, YAMAMOTO M, LI Q X. High efficient production of hydrogen from bio-oil using low-temperature electrochemical catalytic reforming approach over NiCuZn-Al2O3 catalyst[J]. Catal Lett, 2009, 127(3/4):323-333. http://cat.inist.fr/?aModele=afficheN&cpsidt=17144011
    [12] YUAN L X, CHEN Y Q, SONG C F, YE T Q, GUO Q X, ZHU X F, TORIMOTO Y, LI Q X. Electrochemical catalytic reforming of oxygenated-organic compounds:A highly efficient method for production of hydrogen from bio-oil[J]. Chem Commun, 2008, 41:5215-5217. https://www.ncbi.nlm.nih.gov/pubmed/18956073
    [13] KAN T, XIONG J X, LI X L, YE T Q, YUAN L X, TORIMOTO Y, YAMAMOTO M, LI Q X. High efficient production of hydrogen from crude bio-oil via an integrative process between gasification and current-enhanced catalytic steam reforming[J]. Int J Hydrogen Energy, 2010, 35(2):518-532. doi: 10.1016/j.ijhydene.2009.11.010
    [14] 陶君. 镍基催化剂催化转化生物质焦油典型组分的研究[D]. 北京: 华北电力大学, 2015.

    TAO Jun. Research on the catalytic conversion of biomass tar model compounds using Ni-based catalysts[D]. Beijing: North China Electric Power University, 2015.
    [15] YUAN L X, YE T Q, GUO Q X, TORIMOTO Y, YAMAMOTO M, LI Q X. Hydrogen production from the current-enhanced reforming and decomposition of ethanol[J]. Energy Fuels, 2009, 23(6):3103-3112. doi: 10.1021/ef801131a
    [16] HU X, LU G X. Investigation of steam reforming of acetic acid to hydrogen over Ni-Co metal catalyst[J]. J Mol Catal A:Chen, 2007, 261(1):43-48. doi: 10.1016/j.molcata.2006.07.066
    [17] HU X, LU G X. Syngas production by CO2 reforming of ethanol over Ni/Al2O3 catalyst[J]. Catal Commun, 2009, 10(13):1633-1637. doi: 10.1016/j.catcom.2009.04.030
    [18] 姜洪涛, 华炜, 计建炳.甲烷重整制合成气镍催化剂积炭研究[J].化学进展, 2013, 25(5):859-868. http://manu56.magtech.com.cn/progchem/CN/abstract/abstract11074.shtml

    JIANG Hong-tao, HUA Wei, JI Jian-bing. Study of coke deposition on Ni catalysts for methane reforming to syngas[J]. Prog Chem, 2013, 25(5):859-868. http://manu56.magtech.com.cn/progchem/CN/abstract/abstract11074.shtml
    [19] 方修忠. 高效抗积炭Ni基甲烷重整制氢催化剂的制备和性能研究[D]. 江西: 南昌大学, 2016.

    FANG Xiu-zhong. The preparation of highly active and coke resistant Ni-based catalysts for methane reforming for hydrogen production[D]. Jiangxi: Nanchang University, 2016.
    [20] PAKHARE D, SPIVEY J. A review of dry (CO2) reforming of methane over noble metal catalysts[J]. Chem Soc Rev, 2014, 21:7813-7837. http://www.ncbi.nlm.nih.gov/pubmed/24504089
    [21] MA Z, JIANG Q Z, WANG X, ZHANG W G, MA Z F. CO2 reforming of dimethyl ether over Ni/γ-Al2O3 catalyst[J]. Catal Commun, 2012, 17:49-53. doi: 10.1016/j.catcom.2011.10.014
    [22] LUISETTO I, SARNO C, FELICIS D D, BASOLI F, BATTOCCHIO C, TUTI S, LICOCCIA S, BARTOLOMEO E D. Ni supported on γ-Al2O3 promoted by Ru for the dry reforming of methane in packed and monolithic reactors[J]. Fuel Process Technol, 2017, 158:130-140. doi: 10.1016/j.fuproc.2016.12.015
    [23] 赵云莉. 甲烷重整制氢镍基催化剂制备及活性评价研究[D]. 太原: 太原理工大学, 2009.

    ZHAO Yun-li. Study of methane catalytic reforming to hydrogen on nickel-based catalysts[D]. Taiyuan: Taiyuan University of Technology, 2009.
    [24] 袁丽霞. 电催化水蒸气重整生物油及乙醇制氢的基础应用研究[D]. 安徽: 中国科学技术大学, 2008.

    YUAN Li-xia. Basic application research on the hydrogen production from bio-oil and ethanol by electrochemical catalytic steam reforming[D]. Anhui: University of Science and Technology of China, 2008.
    [25] 李春义, 余长春, 沈师孔. Ni/Al2O3催化剂上CH4部分氧化制合成气反应积炭的原因[J].催化学报, 2001, 22:377-382. doi: 10.3321/j.issn:0253-9837.2001.04.016

    LI Chun-yi, YU Chang-chun, SHEN Shi-kong. Ni/Al2O3 catalyst for partial oxidation of CH4 to syngas[J]. Chin J Catal, 2001, 22:377-382 doi: 10.3321/j.issn:0253-9837.2001.04.016
    [26] WU H J, PANTALEO G, PAROLA V L, VENEZIA A M, COLLARD X, APRILE C, LIOTTA L. Bi-and trimetallic Ni catalysts over Al2O3 and Al2O3-MOx (M=Ce or Mg) oxides for methane dry reforming:Au and Pt additive effects[J]. Appl Catal B:Environ, 2014, 156-157:350-361. doi: 10.1016/j.apcatb.2014.03.018
    [27] HOFFER B W, LANGEVELD A D, JANESSENS J P, BONNÈ R L C, LOK C M, MOOLIJIN J A. Stability of highly dispersed Ni/Al2O3 catalysts:Effects of pretreatment[J]. J Catal, 2000, 192:432-440. doi: 10.1006/jcat.2000.2867
    [28] MIRYAM G C, CRISTINA J G, BEATRIZ D R, JOSE I G, Rubén L F. Effect of Ni/Al molar ratio on the performance of substoichiometric NiAl2O4 spinel-based catalysts for partial oxidation of methane[J]. Appl Catal B:Environ, 2017, 209:128-138. doi: 10.1016/j.apcatb.2017.02.063
    [29] NESBITT H W, D. LEGRANG, BANCOF G M. Interpretation of Ni 2p XPS spectra of Ni conductors and Ni insulators[J]. Phys Chem Minerals, 2000, 27:357-366. doi: 10.1007/s002690050265
    [30] 李春义, 余长春, 沈师孔. Ni/Al2O3催化剂上CH4部分氧化制合成气反应积炭的原因[J].催化学报, 2001, 22:377-382. doi: 10.3321/j.issn:0253-9837.2001.04.016

    LI Chun-yi, YU Chang-chun, SHEN Shi-kong. Ni/Al2O3 catalyst for partial oxidation of CH4 to syngas[J]. Chin J Catal, 2001, 22:377-382 doi: 10.3321/j.issn:0253-9837.2001.04.016
    [30] GUCZI L, STEFLER G, GESZTI O, SAJO I, PASZTI Z, TOMPOS A, SCHAY Z. Methane dry reforming with CO2:A study on surface carbon species[J]. Appl Catal A:Gen, 2010, 375:236-246. doi: 10.1016/j.apcata.2009.12.040
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  41
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-21
  • 修回日期:  2018-01-18
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-04-10

目录

    /

    返回文章
    返回