留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characterization and catalytic behavior of EDTA modified silica nanosprings (NS)-supported cobalt catalyst for Fischer-Tropsch CO-hydrogenation

Abdulbaset M. Alayat Elena Echeverria David N. Mcllroy Armando G. McDonald

Abdulbaset M. Alayat, Elena Echeverria, David N. Mcllroy, Armando G. McDonald. Characterization and catalytic behavior of EDTA modified silica nanosprings (NS)-supported cobalt catalyst for Fischer-Tropsch CO-hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2018, 46(8): 957-966.
Citation: Abdulbaset M. Alayat, Elena Echeverria, David N. Mcllroy, Armando G. McDonald. Characterization and catalytic behavior of EDTA modified silica nanosprings (NS)-supported cobalt catalyst for Fischer-Tropsch CO-hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2018, 46(8): 957-966.

详细信息
  • 中图分类号: O643

Characterization and catalytic behavior of EDTA modified silica nanosprings (NS)-supported cobalt catalyst for Fischer-Tropsch CO-hydrogenation

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1  H2-TPR profiles of calcined Co/NS and Co/NS-EDTA catalysts

    Figure  2  X-ray diffractograms of calcined Co/NS and Co/NS-EDTA catalysts

    Figure  3  Transmission electron micrographs of calcined catalysts (a)-(c) Co/NS and (d)-(f) Co/NS-EDTA

    Figure  4  Survey XPS spectra of the calcined Co/NS and Co/NS-EDTA catalysts

    Figure  5  High resolution XPS spectra of the Co 2p of calcined Co/NS and Co/NS-EDTA catalysts

    Figure  6  (a) TGA and (b) DTA thermograms of Co/NS, Co/NS-EDTA and virgin style="class:table_top_border2"

    Figure  7  FT-IR spectra of unmodified Co/NS, modified Co/NS-EDTA catalysts and virgin style="class:table_top_border2"

    Figure  8  Total ion current chromatograms of condensable FTS products from the (a) Co/NS and (b) Co/NS-EDTA catalysts

    Figure  9  Production distribution of FT hydrocarbons (C6-18) from Co/NS and Co/NS-EDTA catalysts

    Figure  10  CO conversion with time on stream Co/NS and Co/NS-EDTA catalysts

    Table  1  Physical characteristics of unmodified Co/NS, modified Co/NS-EDTA catalysts, and virgin NS

    Catalyst Co w/% SBET /(m2·g-1) Size of Co3O4 particles d/nm dXRD(Co0) /nm Co dispersion/%
    dXRD dTEM
    NS - 314 - - - -
    Co/NS 15 193 12.4 9.4 9.3 10.3
    Co/NS-EDTA 15 94.5 11.8 14.6 8.8 10.9
    下载: 导出CSV

    Table  2  Catalytic performance and major components of synthesized liquid F-T fuel over Co/NS and Co/NS-EDTA catalysts at 230 ℃, H2/CO of 2:1 and at atmospheric pressure

    Catalyst Co/NS Co/NS-EDTA
    CO conversion x/% 65.5 70.3
    H2 conversion x/% 61.2 73.2
    Products selectivity s/%
    CO2 select. s/% 5.3 3.4
    CH4 select. s/% 6.7 12.7
    ∑ < C5 17.1 16.6
    Product distribution wm/%
    ∑ C6-11 (naphtha range fuel) 59.3 34.4
    ∑ C12-15 (jet range fuel) 11.6 21.3
    ∑ > C15(diesel range fuel) - 11.6
    ∑ > C6 70.9 67.3
    C6-18 paraffins 18.4 28.7
    C6-18 olefins 26.6 16.5
    C6-18 naphthenes 17.3 13.8
    C6-18 oxygenates 8.6 8.3
    Paraffins/olefins (P/O) 0.69 1.72
    下载: 导出CSV
  • [1] ALAYAT A, MCLLROY D, MCDONALD A G. Effect of synthesis and activation methods on the catalytic properties of silica nanospring (NS)-supported iron catalyst for Fischer-Tropsch synthesis[J]. Fuel Process Technol, 2018, 169:132-141. doi: 10.1016/j.fuproc.2017.09.011
    [2] ZHAO Y H, SONG Y H, HAO Q Q, WANG Y J, WANG W, LIU Z T, ZHANG D, LIU Z W, ZHANG Q J, LU J. Cobalt-supported carbon and alumina co-pillared montmorillonite for Fischer-Tropsch synthesis[J]. Fuel Process Technol, 2015, 138:116-124. doi: 10.1016/j.fuproc.2015.05.019
    [3] XIE R, LI D, HOU B, WANG J, JIA L, SUN Y. Silylated Co3O4-m-SiO2 catalysts for Fischer-Tropsch synthesis[J]. Catal Commun, 2011, 12(7):589-592. doi: 10.1016/j.catcom.2010.12.013
    [4] MOCHIZUKI T, HARA T, KOIZUMI N, YAMADA M. Novel preparation method of highly active Co/SiO2 catalyst for Fischer-Tropsch synthesis with chelating agents[J]. Catal Lett, 2007, 113(3/4):165-169. https://www.researchgate.net/publication/272631040_Fischer-Tropsch_Synthesis_over_CoSiO2_Catalysts_Modified_with_Ethylenediamine
    [5] BAMBAL A S. Study of the effect of surface modification and sulfur impurities in syngas on the Fischer-Tropsch performance of cobalt catalysts[J]. Morgantown:West Virginia University, 2012.
    [6] JI L, LIN J, TAN K, ZENG H. Synthesis of high-surface-area alumina using aluminum tri-sec-butoxide-2, 4-pentanedione-2-propanol-nitric acid precursors[J]. Chem materials, 2000, 12(4):931-939.
    [7] BAMBAL A S, KUGLER E L, GARDNER T H, DADYBURJOR D B. Effect of surface modification by chelating agents on Fischer-Tropsch performance of Co/SiO2 catalysts[J]. Ind Eng Chem Res, 2013, 52(47):16675-16688. doi: 10.1021/ie4019676
    [8] KOIZUMI N, IBI Y, HONGO D, HAMABE Y, SUZUKI S, HAYASAKA Y, SHINDO T, YAMADA M. Mechanistic aspects of the role of chelating agents in enhancing Fischer-Tropsch synthesis activity of Co/SiO2 catalyst:Importance of specific interaction of Co with chelate complex during calcination[J]. J Catal, 2012, 289:151-163. doi: 10.1016/j.jcat.2012.02.003
    [9] VALENCIA D, PENA L, UC VH, GARCÍA-CRUZ I. Metal-support interactions revisited by theoretical calculations:The influence of organic ligands for preparing Ni/SiO2 catalysts[J]. Appl Catal A:Gen, 2014, 475:134-139. doi: 10.1016/j.apcata.2014.01.018
    [10] REPO E, MALINEN L, KOIVULA R, HARJULA R, SILLANPÄÄ M. Capture of Co (Ⅱ) from its aqueous EDTA-chelate by DTPA-modified silica gel and chitosan[J]. J Hazardous Materials, 2011, 187(1/3):122-132.
    [11] KUMAR R, BARAKAT M, DAZA Y, WOODCOCK H, KUHN J. EDTA functionalized silica for removal of Cu (Ⅱ), Zn (Ⅱ) and Ni (Ⅱ) from aqueous solution[J]. J Colloid Interface Sci, 2013, 408:200-205. doi: 10.1016/j.jcis.2013.07.019
    [12] KUŚMIERZ M, PASIECZNA-PATKOWSKA S. FT-IR/PAS study of surface EDTA-ZnO interactions[J]. Annales UMCS, Chemia, 68(1/2):25-31.
    [13] MOCHIZUKI T, HARA T, KOIZUMI N, YAMADA M. Surface structure and Fischer-Tropsch synthesis activity of highly active Co/SiO2 catalysts prepared from the impregnating solution modified with some chelating agents[J]. Appl Catal A:Gen, 2007, 317(1):97-104. doi: 10.1016/j.apcata.2006.10.005
    [14] SAI V, GANGADEAN D, NIRAULA I, JABAL J M, CORTI G, MCILROY D, ERIC ASTON D, BRANEN J R, HRDLICKA P J. Silica nanosprings coated with noble metal nanoparticles:Highly active SERS substrates[J]. J Phys Chem C, 2010, 115(2):453-459.
    [15] LUO G, FOUETIO KENGNE B A, MCILROY D N, MCDONALD A G. A novel nano fischer-tropsch catalyst for the production of hydrocarbons[J]. Environmental Progress Sustainable Energy, 2014, 33(3):693-698. doi: 10.1002/ep.v33.3
    [16] KENGNE B A F, ALAYAT A M, LUO G, MCDONALD A G, BROWN J, SMOTHERMAN H, MCLLROY D N. Preparation, surface characterization and performance of a Fischer-Tropsch catalyst of cobalt supported on silica nanosprings[J]. Appl Surface Sci, 2015, 359:508-514. doi: 10.1016/j.apsusc.2015.10.081
    [17] AHMADIPOUR M, HATAMI M, RAO K V. Preparation and characterization of nano-sized (Mg (x) Fe (1-x) O/SiO2)(x=0.1) core-shell nanoparticles by chemical precipitation method[J]. Adv Nanopart, 2012, 46(2):315-328.
    [18] HAO Q Q, ZHAO Y H, YANG H H, LIU Z T, LIU Z W. Alumina grafted to SBA-15 in supercritical CO2 as a support of cobalt for Fischer-Tropsch synthesis[J]. Energy Fuels, 2012, 26(11):6567-6575. doi: 10.1021/ef301447s
    [19] REPO E, WARCHOŁ J K, BHATNAGAR A, SILLANPÄÄ M. Heavy metals adsorption by novel EDTA-modified chitosan-silica hybrid materials[J]. J Colloid Interface Sci, 2011, 358(1):261-267. doi: 10.1016/j.jcis.2011.02.059
    [20] BADOGA S. Synthesis and characterization of NiMo supported mesoporous materials with EDTA and phosphorus for hydrotreating of heavy gas oil[D]. Sakatchewan: University of Sakatchewan, 2015.
    [21] THYSSEN V V, MAIA T A, ASSAF E M. Cu and Ni catalysts supported on γ-Al2O3 and SiO2 assessed in glycerol steam reforming reaction[J]. J Brazilian Chem Soc, 2015, 26(1):22-31. https://www.researchgate.net/publication/222382412_Ethanol_steam_reforming_on_NiAl-SBA-15_catalysts_Effect_of_the_aluminium_content
    [22] PARK K, LIANG G, JI X, LUO Z P, LI C, CROFT M C, MARKERT J T. Structural and magnetic properties of gold and silica doubly coated γ-Fe2O3 nanoparticles[J]. J Phys Chem C, 2007, 111(50):18512-18519. doi: 10.1021/jp0757457
    [23] MERINO M C G, NASISI L D T, MONTOYA W M, AGUILERA J N U, DE RAPP M E F, LASCALEA G E, VÁZQUEZ P G. Combustion syntheses of Co3O4 powders using different fuels[J]. Procedia Mater Sci, 2015, 8:526-534. doi: 10.1016/j.mspro.2015.04.105
    [24] ZHENG J, CAI J, JIANG F, XU Y, LIU X. Investigation of the highly tunable selectivity to linearα-olefins in Fischer-Tropsch synthesis over silica-supported Co and CoMn catalysts by carburization-reduction pretreatment[J]. Catal Sci Technol, 2017, 7(20):4736-4755. doi: 10.1039/C7CY01764B
    [25] LI Y, DONG C, CHU J, QI J, LI X. Surface molecular imprinting onto fluorescein-coated magnetic nanoparticles via reversible addition fragmentation chain transfer polymerization:A facile three-in-one system for recognition and separation of endocrine disrupting chemicals[J]. Nanoscale, 2011, 3(1):280-287. doi: 10.1039/C0NR00614A
    [26] MUSIĆ S, FILIPOVIĆ-VINCEKOVIĆ N, SEKOVANIĆ L. Precipitation of amorphous SiO2 particles and their properties[J]. Brazilian J Chem Eng, 2011, 28(1):89-94. doi: 10.1590/S0104-66322011000100011
    [27] NABID M R, BIDE Y, ABUALI M. Copper core silver shell nanoparticle-yolk/shell Fe3O4@chitosan-derived carbon nanoparticle composite as an efficient catalyst for catalytic epoxidation in water[J]. RSC Adv, 2014, 4(68):35844-35851. doi: 10.1039/C4RA05283H
    [28] MOGHANIAN H, MOBINIKHALEDI A, BLACKMAN A, SAROUGH-FARAHANI E. Sulfanilic acid-functionalized silica-coated magnetite nanoparticles as an efficient, reusable and magnetically separable catalyst for the solvent-free synthesis of 1-amido-and 1-aminoalkyl-2-naphthols[J]. RSC Adv, 2014, 4(54):28176-28185. doi: 10.1039/C4RA03676J
    [29] RAFIEE H R, FEYZI M, JAFARI F, SAFARI B. Preparation and characterization of promoted Fe-V/SiO2 nanocatalysts for oxidation of alcohols[J]. J Chem, 2013.
    [30] XIE R, LI D, HOU B, WANG J, JIA L, SUN Y. Silylated Co3O4-m-SiO2 catalysts for Fischer-Tropsch synthesis[J]. Catal Commun, 2011, 12(7):589-592. doi: 10.1016/j.catcom.2010.12.013
    [31] BADOGA S, DALAI A K, ADJAYE J, HU Y. Combined effects of EDTA and heteroatoms (Ti, Zr, and Al) on catalytic activity of SBA-15 supported NiMo catalyst for hydrotreating of heavy gas oil[J]. Ind Eng Chem Res, 2014, 53(6):2137-2156. doi: 10.1021/ie400695m
    [32] BAMBAL A S, GUGGILLA V S, KUGLER E L, GARDNER T H, DADYBURJOR D B. Poisoning of a silica-supported cobalt catalyst due to presence of sulfur impurities in syngas during Fischer-Tropsch synthesis:Effects of chelating agent[J]. Ind Eng Chem Res, 2014, 53(14):5846-5857. doi: 10.1021/ie500243h
    [33] FAN L, FUJIMOTO K. Fischer-Tropsch synthesis in supercritical fluid:Characteristics and application[J]. Appl Catal A:Gen, 1999, 186(1/2):343-354.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  45
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-14
  • 修回日期:  2018-07-03
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-08-10

目录

    /

    返回文章
    返回