留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

One step NaBH4 reduction of Pt-Ru-Ni catalysts on different types of carbon supports for direct ethanol fuel cells: Synthesis and characterization

Napha Sudachom Chompunuch Warakulwit Chaiwat Prapainainar Thongthai Witoon Paweena Prapainainar

Napha Sudachom, Chompunuch Warakulwit, Chaiwat Prapainainar, Thongthai Witoon, Paweena Prapainainar. One step NaBH4 reduction of Pt-Ru-Ni catalysts on different types of carbon supports for direct ethanol fuel cells: Synthesis and characterization[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 596-607.
Citation: Napha Sudachom, Chompunuch Warakulwit, Chaiwat Prapainainar, Thongthai Witoon, Paweena Prapainainar. One step NaBH4 reduction of Pt-Ru-Ni catalysts on different types of carbon supports for direct ethanol fuel cells: Synthesis and characterization[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 596-607.

基金项目: 

the Institutional Research Grant IRG598004

详细信息
  • 中图分类号: O643.3

One step NaBH4 reduction of Pt-Ru-Ni catalysts on different types of carbon supports for direct ethanol fuel cells: Synthesis and characterization

Funds: 

the Institutional Research Grant IRG598004

More Information
  • 本文的英文电子版由Elsevier出版社在ScienceDirect上出版 (http://www.sciencedirect.com/science/journal/18725813).
  • Figure  1  SEM images of MWCNT (a), f-MWCNT (b), CB (c), f-CB (d), PC-Zn-succinic (e) and f-PC-Zn-succinic (f)

    Figure  2  XRD patterns of all carbon supports before and after functionalization

    Figure  3  TGA curves of all carbon supports before and after functionalization

    Figure  4  FT-IR spectra of all carbon supports before and after functionalization

    Figure  5  XRD patterns of Pt75Ru5Ni20/PC-Zn-succinic (a), Pt75Ru5Ni20/f-MWCNT (b), Pt75Ru5Ni20/f-CB (c), Pt75Ru25/f-CB (d) and Pt/f-CB (e) (inset: close-up of Pt (220) planes)

    Figure  6  SEM element mapping images of Pt75Ru5Ni20/PC-Zn-succinic (a), Pt75Ru5Ni20/f-MWCNT (b), Pt75Ru5Ni20/f-CB (c), Pt75Ru25/f-CB (d) and Pt/f-CB (e)

    Figure  7  Survey analysis XPS spectra of ternary catalysts

    Figure  8  XPS high resolution analysis of Pt 4f(a), Ni 2p(b) and O 1s(c)

    Figure  9  TEM images and particle size histograms of Pt75Ru5Ni20/PC-Zn-succinic (a), Pt75Ru5Ni20/f-MWCNT (b), Pt75Ru5Ni20/f-CB (c), Pt75Ru25/f-CB (d) and Pt/f-CB (e)

    Figure  10  Cyclic voltammograms of all catalysts operated in 0.5 mol/L CH3CH2OH containing 0.5 mol/L H2SO4 solution at scan rate of 20 mV/s

    Figure  11  Chronoamperometry curves of all catalysts operated in 0.5 mol/L CH3CH2OH containing 0.5 mol/L H2SO4 solution at a fixed potential of 0.70 V and scan rate of 20 mV/s

    Table  1  Surface area and pore volume of carbon supports

    Sample ABET
    /(m2·g-1)
    Amicro
    /(m2·g-1)
    Aext
    /(m2·g-1)
    vtot
    /(cm3·g-1)
    vmicro
    /(cm3·g-1)
    vmeso+macro
    /(cm3·g-1)
    MWCNT 138 3 135 1.19 0 1.19
    f-MWCNT 148 8 140 1.04 0 1.04
    CB 206 54 151 1.4 0.03 1.37
    f-CB 116 26 89 0.75 0.01 0.73
    PC-Zn-succinic 2 176 435 1 740 5.23 0.19 5.04
    f-PC-Zn-succinic 0.06 0.12 0 0 0 0
    下载: 导出CSV

    Table  2  Component of C and O reported from XPS results

    Material Relative intensity /%
    C O
    MWCNT 98.22 1.78
    f-MWCNT 92.75 7.25
    CB 95.67 4.33
    f-CB 88.05 11.95
    PC-Zn-succinic 98.02 1.98
    下载: 导出CSV

    Table  3  XRD parameters of all catalysts determined from Pt (220) planes

    Catalyst 2θ/(°) d-spacing /nm Crystallite size d/nm Lattice parameter d/nm
    Pt75Ru5Ni20/PC-Zn-succinic 67.66 0.138 471 4.37 0.339 18
    Pt75Ru5Ni20/f-MWCNT 68.03 0.137 815 4.22 0.337 58
    Pt75Ru5Ni20/f-CB 67.91 0.138 013 5.11 0.338 06
    Pt75Ru25/f-CB 67.98 0.137 893 4.41 0.337 77
    Pt/f-CB 67.70 0.138 395 5.16 0.339 00
    下载: 导出CSV

    Table  4  Composition of catalysts evaluated from SEM-EDX

    Catalyst Atomic ratio
    Pt Ru Ni
    Pt75Ru5Ni20/PC-Zn-succinic 89.23 ± 1.5 6.92 ± 1.14 3.85 ± 0.46
    Pt75Ru5Ni20/f-MWCNT 77.80 ± 0.93 6.73 ± 0.41 15.47 ± 1.18
    Pt75Ru5Ni20/f-CB 77.15 ± 1.23 3.11 ± 1.01 19.74 ± 0.57
    Pt75Ru25/f-CB 73.66 ± 1.13 26.34 ± 1.13 -
    Pt/f-CB 100.00 ± 0.00 - -
    下载: 导出CSV

    Table  5  Metal loading evaluated from TGA

    Sample Metal loading /%
    Pt75Ru5Ni20/PC-Zn-succinic 17.24
    Pt75Ru5Ni20/f-MWCNT 24.47
    Pt75Ru5Ni20/f-CB 22.46
    Pt75Ru25/f-CB 24.34
    Pt/f-CB 23.84
    下载: 导出CSV

    Table  6  Metal components obtained from XPS results

    Form of metal Relative intensity /%
    Pt75Ru5Ni20/PC-Zn-succinic Pt75Ru5Ni20/f-MWCNT Pt75Ru5Ni20/f-CB
    Pt (0) 55.9 61.5 57.8
    Pt (2+) 23.5 22.6 26.0
    Pt (3+) 11.4 10.4 9.1
    Pt (4+) 9.3 5.4 7.0
    下载: 导出CSV
  • [1] WANG Z B, YIN G P, ZHANG J, SUN Y C, SHI P F. Investigation of ethanol electrooxidation on a Pt-Ru-Ni/C catalyst for a direct ethanol fuel cell[J]. J Power Sources, 2006, 160(1):37-43. doi: 10.1016/j.jpowsour.2006.01.021
    [2] HASSAN H B. Electrodeposited Pt and Pt-Sn nanoparticles on Ti as anodes for direct methanol fuel cells[J]. J Fuel Chem Technol, 2009, 37(3):346-354. doi: 10.1016/S1872-5813(09)60024-4
    [3] PARREIRA L S, DA SILVA J C M, D'VILLA-SILVA M, SIMÕES F C, GARCIA S, GAUBEUR I, CORDEIRO M A L, LEITE E R, DOS SANTOS M C. PtSnNi/C nanoparticle electrocatalysts for the ethanol oxidation reaction:Ni stability study[J]. Electrochim Acta, 2013, 96:243-252. doi: 10.1016/j.electacta.2013.02.054
    [4] NETO A O, DIAS R R, TUSI M M, LINARDI M, SPINACÉ E V. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process[J]. J Power Sources, 2007, 166(1):87-91. doi: 10.1016/j.jpowsour.2006.12.088
    [5] RIBADENEIRA E, HOYOS B A. Evaluation of Pt-Ru-Ni and Pt-Sn-Ni catalysts as anodes in direct ethanol fuel cells[J]. J Power Sources, 2008, 180(1):238-242. doi: 10.1016/j.jpowsour.2008.01.084
    [6] WANG W, WANG R, WANG H, JI S, KEY J, LI X, LEI Z. An advantageous method for methanol oxidation:Design and fabrication of a nanoporous PtRuNi trimetallic electrocatalyst[J]. J Phys Chem C, 2011, 196(22):9346-9351. https://www.researchgate.net/publication/251589550_An_advantageous_method_for_methanol_oxidation_Design_and_fabrication_of_a_nanoporous_PtRuNi_trimetallic_electrocatalyst
    [7] SOUNDARARAJAN D, PARK J H, KIM K H, KO J M. Pt-Ni alloy nanoparticles supported on CNF as catalyst for direct ethanol fuel cells[J]. Curr Appl Phys, 2012, 12(3):854-859. doi: 10.1016/j.cap.2011.11.020
    [8] BEYHAN S, LÉGER J-M, KADIRGAN F. Understanding the influence of Ni, Co, Rh and Pd addition to PtSn/C catalyst for the oxidation of ethanol by in situ Fourier transform infrared spectroscopy[J]. Appl Catal B:Environ, 2014, 144:66-74. doi: 10.1016/j.apcatb.2013.07.020
    [9] SUDACHOM N, WARAKULWIT C, PARPAINAINAR P. The effect of ternary catalyst atomic ratios (PtRuSn/C and PtRuNi/C) on ethanol electrooxidation for direct ethanol fuel cell[J]. Key Eng Mater, 2015, 659:247-251. doi: 10.4028/www.scientific.net/KEM.659
    [10] ZHOU Z, WANG S, ZHOU W, WANG G, JIANG L, LI W, SONG S, LIU J, SUN G, XIN Q. Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell[J]. Chem Commun, 2003, (3):394-395. doi: 10.1039/b211075j
    [11] MARTÍNEZ-HUERTA M V, ROJAS S, GÓMEZ DE LA FUENTE J L, TERREROS P, PEÑA M A, FIERRO J L G. Effect of Ni addition over PtRu/C based electrocatalysts for fuel cell applications[J]. Appl Catal B:Environ, 2006, 69(1/2):75-84. http://www.academia.edu/3846053/Effect_of_Ni_addition_over_PtRu_C_based_electrocatalysts_for_fuel_cell_applications
    [12] LIU Z, GUO B, HONG L, LIM T H. Microwave heated polyol synthesis of carbon-supported PtSn nanoparticles for methanol electrooxidation[J]. Electrochem Commun, 2006, 8(1):83-90. doi: 10.1016/j.elecom.2005.10.019
    [13] LIU C W, CHANG Y W, WEI Y C, WANG K W. The effect of oxygen containing species on the catalytic activity of ethanol oxidation for PtRuSn/C catalysts[J]. Electrochim Acta, 2011, 56(5):2574-2581. doi: 10.1016/j.electacta.2010.11.013
    [14] JONGSOMJIT S, SOMBATMANKHONG K, PRAPAINAINAR P. Effect of acid functionalised carbon supports for Pd-Ni-Sn catalyst on ethanol oxidation reaction[J]. RSC Adv, 2015, 5(75):61298-61308. doi: 10.1039/C5RA07508D
    [15] WANG J, YIN G, SHAO Y, WANG Z, GAO Y. Investigation of further improvement of platinum catalyst durability with highly graphitized carbon nanotubes support[J]. J Phys Chem C, 2008, 112(15):5784-5789. doi: 10.1021/jp800186p
    [16] MUNEENDRA PRASAD A, SANTHOSH C, NIRMALA GRACE A. Carbon nanotubes and polyaniline supported Pt nanoparticles for methanol oxidation towards DMFC applications[J]. Appl Nanosci, 2012, 2(4):457-466. doi: 10.1007/s13204-012-0061-4
    [17] LIU Z L, HUANG R, DENG Y J, CHEN D H, HUANG L, CAI Y R, WANG Q, CHEN S P, SUN S G. Catalyst of Pt nanoparticles loaded on multi-walled carbon nanotubes with high activity prepared by electrodeposition without supporting electrolyte[J]. Electrochim Acta, 2013, 112:919-926. doi: 10.1016/j.electacta.2013.05.139
    [18] AIYAPPA H B, PACHFULE P, BANERJEE R, KURUNGOT S. Porous carbons from nonporous MOFs:Influence of ligand characteristics on intrinsic properties of end carbon[J]. Cryst Growth Des, 2013, 13(10):4195-4199. doi: 10.1021/cg401122u
    [19] XI K, CAO S, PENG X, DUCATI C, KUMAR R V, CHEETHAM A K. Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries[J]. Chem Commun (Camb), 2013, 49(22):2192-2194. doi: 10.1039/c3cc38009b
    [20] LIM S, SUH K, KIM Y, YOON M, PARK H, DYBTSEV D N, KIM K. Porous carbon materials with a controllable surface area synthesized from metal-organic frameworks[J]. Chem Commun (Camb), 2012, 48(60):7447-7449. doi: 10.1039/c2cc33439a
    [21] LÁZARO M J, CELORRIO V, CALVILLO L, PASTOR E, MOLINER R. Influence of the synthesis method on the properties of Pt catalysts supported on carbon nanocoils for ethanol oxidation[J]. J Power Sources, 2011, 196(9):4236-4241. doi: 10.1016/j.jpowsour.2010.10.055
    [22] CALVILLO L, CELORRIO V, MOLINER R, LÁZARO M J. Influence of the support on the physicochemical properties of Pt electrocatalysts:Comparison of catalysts supported on different carbon materials[J]. Mater Chem Phys, 2011, 127(1/2):335-341. https://www.researchgate.net/publication/238000446_Influence_of_the_support_on_the_physicochemical_properties_of_Pt_electrocatalysts_Comparison_of_catalysts_supported_on_different_carbon_materials
    [23] SCHLANGE A, DOS SANTOS A R, HASSE B, ETZOLD B J M, KUNZ U, TUREK T. Titanium carbide-derived carbon as a novel support for platinum catalysts in direct methanol fuel cell application[J]. J Power Sources, 2012, 199:22-28. doi: 10.1016/j.jpowsour.2011.09.107
    [24] STEIN A, WANG Z, FIERKE M A. Functionalization of porous carbon materials with designed pore architecture[J]. Adv Mater, 2009, 21(3):265-293. doi: 10.1002/adma.v21:3
    [25] XUE P, GAO J, BAO Y, WANG J, LI Q, WU C. An analysis of microstructural variations in carbon black modified by oxidation or ultrasound[J]. Carbon, 2011, 49(10):3346-3355. doi: 10.1016/j.carbon.2011.04.040
    [26] UNGÁR T, GUBICZA J, RIBÁRIK G, PANTEA C, ZERDA T W. Microstructure of carbon blacks determined by X-ray diffraction profile analysis[J]. Carbon, 2002, 40(6):929-937. doi: 10.1016/S0008-6223(01)00224-X
    [27] LI W, LIANG C, ZHOU W, QIU J, ZHOU, SUN G, XIN Q. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells[J]. J Phys Chem B, 2003, 107(26):6292-6299. doi: 10.1021/jp022505c
    [28] MEN X H, ZHANG Z Z, SONG H J, WANG K, JIANG W. Functionalization of carbon nanotubes to improve the tribological properties of poly (furfuryl alcohol) composite coatings[J]. Compos Sci Technol, 2008, 68(3/4):1042-1049. https://www.researchgate.net/publication/229406106_Functionalization_of_carbon_nanotubes_to_improve_the_tribological_properties_of_poly_furfuryl_alcohol_composite_coatings
    [29] OSORIO A G, SILVEIRA I C L, BUENO V L, BERGMANN C P. H2SO4/HNO3/HCl-Functionalization and its effect on dispersion of carbon nanotubes in aqueous media[J]. Appl Surf Sci, 2008, 255(5):2485-2489. doi: 10.1016/j.apsusc.2008.07.144
    [30] HUANG W, WANG Y, LUO G, WEI F. 99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing[J]. Carbon, 2003, 41(13):2585-2590. doi: 10.1016/S0008-6223(03)00330-0
    [31] YUDIANTI R, ONGGO H, SUDIRMAN, SAITO Y, IWATA T, AZUMA J I. Analysis of functional group sited on multi-wall carbon nanotube surface[J]. Open Mater Sci J, 2011, 5:242-247. doi: 10.2174/1874088X01105010242
    [32] WU G, CHEN Y S, XU B Q. Remarkable support effect of SWNTs in Pt catalyst for methanol electrooxidation[J]. Electrochem Commun, 2005, 7(12):1237-1243. doi: 10.1016/j.elecom.2005.07.015
    [33] ASHOK KUMAR N, GANAPATHY H S, KIM J S, JEONG Y S, JEONG Y T. Preparation of poly 2-hydroxyethyl methacrylate functionalized carbon nanotubes as novel biomaterial nanocomposites[J]. Eur Polym J, 2008, 44(3):579-586. doi: 10.1016/j.eurpolymj.2007.12.009
    [34] MARZORATI S, RAGG E M, LONGHI M, FORMARO L. Low-temperature intermediates to oxygen reduction reaction catalysts based on amine-modified metal-loaded carbons. An XPS and ss-NMR investigation[J]. Mater Chem Phys, 2015, 162:234-243. doi: 10.1016/j.matchemphys.2015.05.063
    [35] PAN X, BAO X. Reactions over catalysts confined in carbon nanotubes[J]. Chem Commun, 2008, (47):6271-6281. doi: 10.1039/b810994j
    [36] PARK K W, CHOI J H, KWON B K, LEE S A, SUNG Y E, HA H Y, HONG S A, KIM H, WIECKOWSKI A. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation[J]. J Phys Chem B, 2002, 106(8):1869-1877. doi: 10.1021/jp013168v
    [37] WU G, SWAIDAN R, CUI G. Electrooxidations of ethanol, acetaldehyde and acetic acid using PtRuSn/C catalysts prepared by modified alcohol-reduction process[J]. J Power Sources, 2007, 172(1):180-188. doi: 10.1016/j.jpowsour.2007.07.034
    [38] BEYHAN S, LÉGER J M, KADIRGAN F. Pronounced synergetic effect of the nano-sized PtSnNi/C catalyst for ethanol oxidation in direct ethanol fuel cell[J]. Appl Catal B:Environ, 2013, 130-131:305-313. doi: 10.1016/j.apcatb.2012.11.007
    [39] CUNHA E M, RIBEIRO J, KOKOH K B, DE ANDRADE A R. Preparation, characterization and application of Pt-Ru-Sn/C trimetallic electrocatalysts for ethanol oxidation in direct fuel cell[J]. Int J Hydrogen Energy, 2011, 36(17):11034-11042. doi: 10.1016/j.ijhydene.2011.06.011
    [40] LÓPEZ-SUÁREZ F E, BUENO-LÓPEZ A, EGUILUZ K I B, SALAZAR-BANDA G R. Pt-Sn/C catalysts prepared by sodium borohydride reduction for alcohol oxidation in fuel cells:Effect of the precursor addition order[J]. J Power Sources, 2014, 268:225-232. doi: 10.1016/j.jpowsour.2014.06.042
    [41] GUO J W, ZHAO T S, PRABHURAM J, CHEN R, WONG C W. Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells[J]. Electrochim Acta, 2005, 51(4):754-763. doi: 10.1016/j.electacta.2005.05.056
    [42] THEPKAEW J, THERDTHIANWONG S, THERDTHIANWONG A, KUCERNAK A, WONGYAO N. Promotional roles of Ru and Sn in mesoporous PtRu and PtRuSn catalysts toward ethanol electrooxidation[J]. Int J Hydrogen Energy, 2013, 38(22):9454-9463. doi: 10.1016/j.ijhydene.2012.12.038
    [43] DOU M, HOU M, LI Z, WANG F, LIANG D, SHAO Z, YI B. Pt/WO3/C nanocomposite with parallel WO3 nanorods as cathode catalyst for proton exchange membrane fuel cells[J]. J Energy Chem, 2015, 24(1):39-44. doi: 10.1016/S2095-4956(15)60282-0
    [44] JIA Y J, JIANG J C, SUN K, LU T H. Effect of Pt/Au atomic ratio in active-carbon-supported Au-Pt catalysts on its cathodic performance in direct formic acid fuel cells[J]. J Fuel Chem Technol, 2011, 39(10):792-795. doi: 10.1016/S1872-5813(11)60046-7
    [45] MEI Z, LI Y, FAN M, ZHAO L, ZHAO J. Effect of the interactions between Pt species and ceria on Pt/ceria catalysts for water gas shift:The XPS studies[J]. Chem Eng J, 2015, 259:293-302. doi: 10.1016/j.cej.2014.07.125
    [46] YI L, WEI W, ZHAO C, YANG C, TIAN L, LIU J, WANG X. Electrochemical oxidation of sodium borohydride on carbon supported Pt-Zn nanoparticle bimetallic catalyst and its implications to direct borohydride-hydrogen peroxide fuel cell[J]. Electrochim Acta, 2015, 158:209-218. doi: 10.1016/j.electacta.2015.01.111
    [47] ZHAO J, LI H, LIU Z, HU W, ZHAO C, SHI D. An advanced electrocatalyst with exceptional eletrocatalytic activity via ultrafine Pt-based trimetallic nanoparticles on pristine graphene[J]. Carbon, 2015, 87:116-127. doi: 10.1016/j.carbon.2015.01.038
    [48] WANG Z B, ZUO P J, WANG G J, DU C Y, YIN G P. Effect of Ni on PtRu/C catalyst performance for ethanol electrooxidation in acidic medium[J]. J Power Sources, 2008, 112(16):6582-6587. doi: 10.1021/jp800249q
    [49] PARKINSON C R, WALKER M, MCCONVILLE C F. Reaction of atomic oxygen with a Pt (111) surface:Chemical and structural determination using XPS, CAICISS and LEED[J]. Surf Sci, 2003, 545(1/2):19-33. http://wrap.warwick.ac.uk/9187/
    [50] CARMO M, PAGANIN V A, ROSOLEN J M, GONZALEZ E R. Alternative supports for the preparation of catalysts for low-temperature fuel cells:The use of carbon nanotubes[J]. J Power Sources, 2005, 142(1/2):169-176. https://www.researchgate.net/publication/223481510_Alternative_supports_for_the_preparation_of_catalysts_for_low-temperature_fuel_cells_The_use_of_carbon_nanotubes
    [51] BESSEL C A, LAUBERNDS K, RODRIGUEZ N M, BAKER R T K. Graphite nanofibers as an electrode for fuel cell applications[J]. J Phys Chem B, 2001, 105(6):1115-1118. doi: 10.1021/jp003280d
    [52] STEVANOVIĆS, TRIPKOVIĆD, ROGAN J, POPOVIĆK, LOVIĆ J, TRIPKOVIĆ A, JOVANOVIĆ V M. Microwave-assisted polyol synthesis of carbon-supported platinum-based bimetallic catalysts for ethanol oxidation[J]. J Solid State Electr, 2012, 16(10):3147-3157. doi: 10.1007/s10008-012-1755-y
    [53] STEVANOVIĆ S, TRIPKOVIĆ D, ROGAN J, MINIĆ D, GAVRILOVIĆ A, TRIPKOVIĆ A, JOVANOVIĆ V M. Enhanced activity in ethanol oxidation of Pt3Sn electrocatalysts synthesized by microwave irradiation[J]. Russ J Phys Chem A, 2011, 85(13):2299-2304. doi: 10.1134/S0036024411130309
    [54] JAFRI R I, RAMAPRABHU S. Multi walled carbon nanotubes based micro direct ethanol fuel cell using printed circuit board technology[J]. Int J Hydrogen Energy, 2010, 35(3):1339-1346. doi: 10.1016/j.ijhydene.2009.11.067
    [55] CHEN J, JIANG C, LU H, FENG L, YANG X, LI L, WANG R. Solvent effects on Pt-Ru/C catalyst for methanol electro-oxidation[J]. J Nat Gas Chem, 2009, 18(3):341-345. doi: 10.1016/S1003-9953(08)60114-0
    [56] COLMATI F, ANTOLINI E, GONZALEZ E R. Effect of temperature on the mechanism of ethanol oxidation on carbon supported Pt, PtRu and Pt3Sn electrocatalysts[J]. J Power Sources, 2006, 157(1):98-103. doi: 10.1016/j.jpowsour.2005.07.087
    [57] YOO J S, KIM H T, JOH H-I, KIM H, MOON S H. Preparation of a CO-tolerant PtRuxSny/C electrocatalyst with an optimal Ru/Sn ratio by selective Sn-deposition on the surfaces of Pt and Ru[J]. Int J Hydrogen Energy, 2011, 36(3):1930-1938. doi: 10.1016/j.ijhydene.2010.11.061
    [58] DONG L L, TONG X L, WANG Y Y, JIN G Q, GUO X Y. Boron-doped silicon carbide supported Pt catalyst for methanol electrooxidation[J]. J Fuel Chem Technol, 2014, 42(7):845-850. doi: 10.1016/S1872-5813(14)60036-0
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  21
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-21
  • 修回日期:  2017-03-09
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-05-10

目录

    /

    返回文章
    返回