留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质灰对煤焦加氢气化的催化作用

姚奎 张金刚 竹怀礼 王兴军 于广锁 刘海峰 王辅臣

姚奎, 张金刚, 竹怀礼, 王兴军, 于广锁, 刘海峰, 王辅臣. 生物质灰对煤焦加氢气化的催化作用[J]. 燃料化学学报(中英文), 2017, 45(1): 21-28.
引用本文: 姚奎, 张金刚, 竹怀礼, 王兴军, 于广锁, 刘海峰, 王辅臣. 生物质灰对煤焦加氢气化的催化作用[J]. 燃料化学学报(中英文), 2017, 45(1): 21-28.
YAO Kui, ZHANG Jin-gang, ZHU Huai-li, WANG Xing-jun, YU Guang-suo, LIU Hai-feng, WANG Fu-chen. Catalytic effect of biomass ash on the hydrogasification of coal char[J]. Journal of Fuel Chemistry and Technology, 2017, 45(1): 21-28.
Citation: YAO Kui, ZHANG Jin-gang, ZHU Huai-li, WANG Xing-jun, YU Guang-suo, LIU Hai-feng, WANG Fu-chen. Catalytic effect of biomass ash on the hydrogasification of coal char[J]. Journal of Fuel Chemistry and Technology, 2017, 45(1): 21-28.

生物质灰对煤焦加氢气化的催化作用

基金项目: 

国家自然科学基金 21176078

详细信息
    通讯作者:

    王兴军, E-mail:wxj@ecust.edu.cn

  • 中图分类号: TQ541

Catalytic effect of biomass ash on the hydrogasification of coal char

Funds: 

the National Natural Science Foundation of China 21176078

  • 摘要: 以小麦秸秆、马尾藻和山苦荬等三种富含碱金属和碱土金属的生物质为原料,研究了在500、600和815℃下制得的生物质灰对神府煤焦加氢气化的催化作用。结果表明,随着制灰温度由500℃升高至815℃,灰产量减少,且灰中的碱金属和氯元素的含量降低;当制灰温度达到815℃,生物质灰出现明显的熔融现象;600℃灰样对神府煤焦加氢气化具有较好的催化作用,催化效果随灰样添加比例增大而增强。山苦荬灰催化作用较好,而马尾藻灰催化作用较弱。小麦秸秆灰中较高的硅含量和马尾藻灰中较高的氯含量是其催化作用较弱的主要原因;氯元素会加剧碱金属的挥发,弱化与其结合的碱金属的催化效果,对碱金属催化所产生的抑制作用比相同摩尔数的硅更加明显。
  • 图  1  固定床反应系统示意图

    Figure  1  Schematic diagram of the fixed-bed reactor system

    1: mass flow controller; 2: pressure gage; 3: flow meter; 4: flange; 5: thermocouple; 6: metal mesh; 7: electric furnace; 8: corundum tube; 9: liquid/gas separator; 10: gas drying bottle; 11: non-return value; 12: gas analyzer; 13: computer

    图  2  不同温度下山苦荬灰样的XRD谱图

    Figure  2  XRD patterns of IC ash obtained under different temperatures

    图  3  不同温度下生物质灰的SEM照片

    Figure  3  SEM of various ashes obtained at different temperatures

    图  4  负载600、815 ℃灰样下神府煤焦加氢气化气体产量

    Figure  4  Gas yields from the gasification of SF coal in the presence of various ashes (WS, SG and IC) obtained at 600 and 815 ℃

    图  5  负载不同种类生物质灰下神府煤焦加氢气化的甲烷释放速率

    Figure  5  CH4 release rate for the hydrogasification of SF coal with the addition of different biomass ashes

    图  6  负载不同生物质灰下神府煤焦加氢气化的气体产量

    Figure  6  Gas yields from the gasification of coal in the presence of various biomass ashes

    图  7  负载掺混Cl和SiO2的钾基催化剂下神府煤焦加氢气化的气体产量

    Figure  7  Gas yields from the gasification of SF coal when potassium-based catalysts were loaded with Cl and SiO2

    图  8  神府煤焦及其负载不同含量ICA下气化残渣的SEM照片

    Figure  8  SEM images of SF coal char and the residues from the gasification with various amount of IC ash

    图  9  负载不同比例生物质灰下神府煤焦加氢气化的气体产量

    Figure  9  Gas yields as the function of ash loading in the feed mixture

    表  1  样品的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of Shenfu coal (SF), wheat straw (WS), sea grape (SG) and ixeris chinensis (IC)

    Sample Proximate analysis wd /% Ultimate analysis wd /%
    V FC A C H N S O*
    SF 33.29 58.65 8.06 74.20 4.21 0.97 0.63 11.93
    IC 64.63 10.74 24.63 32.58 3.83 3.25 0.49 35.22
    WS 72.07 17.91 10.02 38.76 5.91 0.83 5.33 39.15
    SG 48.85 11.60 37.93 23.74 3.21 0.98 1.26 32.88
    *: O was calculated by the difference
    下载: 导出CSV

    表  2  不同灰化温度下生物质灰灰收率

    Table  2  Ash yield of various biomass materials obtained at different temperatures

    t /℃ Yield w/%
    WSA SGA ICA
    500 11.51 48.00 20.80
    600 11.46 43.10 15.49
    815 10.20 38.90 12.60
    下载: 导出CSV

    表  3  生物质灰成分分析

    Table  3  XRF results of ashes obtained from various biomass materials at different temperatures

    Sample Ashing temp. t/ ℃ Content w/%
    Al2O3 CaO Fe2O3 SiO2 MgO Na2O K2O Cl SO3 undet.
    WSA 500 2.02 8.58 1.19 44.05 2.58 0.51 24.56 7.89 6.89 1.73
    600 2.67 8.98 1.85 45.31 3.72 0.59 22.11 6.43 6.64 1.70
    815 2.86 10.89 1.30 45.60 3.41 0.70 19.06 3.76 10.08 2.34
    SGA 500 1.10 11.89 1.06 4.41 2.46 19.66 21.10 30.78 6.99 0.55
    600 1.85 17.29 0.97 8.41 6.41 16.21 15.08 23.64 9.71 0.43
    815 1.95 18.82 1.14 9.10 7.07 16.03 12.56 20.22 9.55 3.56
    ICA 500 1.01 11.41 0.98 4.08 6.66 6.92 35.40 21.30 6.60 5.64
    600 1.04 8.73 0.77 7.80 8.44 4.07 32.93 17.84 9.21 9.17
    815 2.64 17.85 1.35 10.58 9.68 3.66 24.06 12.97 9.22 7.99
    下载: 导出CSV
  • [1] 洪冰清, 陈凡敏, 王兴军, 于广锁. KOH负载量对不同煤样加氢气化效果影响的实验研究[J].燃料化学学报, 2012, 40(9):1032-1037. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18017.shtml

    HONG Bing-qing, CHEN Fan-min, WANG Xing-jun, YU Guang-suo. Effect of KOH loading on different coals hydrogasification[J]. J Fuel Chem Technol, 2012, 40(9):1032-1037. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18017.shtml
    [2] JIANG M, JIE H, JIE W. Calcium-promoted catalytic activity of potassium carbonate for steam gasification of coal char:Effect of hydrothermal pretreatment[J]. Fuel, 2013, 109(7):14-20.
    [3] 洪冰清, 战书鹏, 王兴军, 王辅臣, 于广锁.不同金属化合物催化呼和浩特煤加氢气化实验研究[J].燃料化学学报, 2012, 40(7):782-789. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17979.shtml

    HONG Bing-qing, ZHAN Shu-peng, WANG Xing-jun, WANG Fu-chen, YU Guang-suo. Experimental study on Hohhot coal hydrogasification catalysed by different metal compounds[J]. J Fuel Chem Technol, 2012, 40(7):782-789. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17979.shtml
    [4] SHETH A C, SASTRY C, YEBOAH Y D, XU Y. Agarwal catalytic gasification of coal using eutectic salts:Reaction kinetics for hydrogasification using binary and ternary eutectic catalysts P.[J]. Fuel, 2004, 83(4/5):557-572.
    [5] HOWANIEC N, SMOLIŃSKI A. Effect of fuel blend composition on the efficiency of hydrogen-rich gas production in co-gasification of coal and biomass[J]. Fuel, 2014, 128:442-450. doi: 10.1016/j.fuel.2014.03.036
    [6] ZHU W, SONG W, LIN W. Catalytic gasification of char from co-pyrolysis of coal and biomass[J]. Fuel Process Technol, 2008, 89(9):890-896. doi: 10.1016/j.fuproc.2008.03.001
    [7] 肖瑞瑞, 陈雪莉, 王辅臣, 于广锁.不同生物质灰的理化特性[J].太阳能学报, 2011, 32(3):364-369. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201103013.htm

    XIAO Rui-rui, CHEN Xue-li, WANG Fu-chen, YU Guang-suo. The physical and chemical properties of different biomass ash[J]. Acta Energ Sol Sin, 2011, 32(3):364-369. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201103013.htm
    [8] SALO K, MOJTAHEDI W. Fate of alkali and trace metals in biomass gasification[J]. Biomass Bioenergy, 1998, 15(3):263-267. doi: 10.1016/S0961-9534(98)00019-1
    [9] DU S, YANG H, QIAN K, WANG X, CHEN H. Fusion and transformation properties of the inorganic components in biomass ash[J]. Fuel, 2014, 117(1):1281-1287.
    [10] LAHIJANI P, ZAINAL Z A, MOHAMED A R, MOHAMMADI M. Ash of palm empty fruit bunch as a natural catalyst for promoting the CO2, gasification reactivity of biomass char[J]. Bioresour Technol, 2012, 132(2):351-355.
    [11] 任伟平.生物质中碱金属对煤气化过程促进作用的分析[D].太原:太原理工大学, 2015.

    REN Wei-ping. Investigation of promoting effect of alkali metals in biomass during coal gasification process[J]. Taiyuan:Taiyuan University of Technology, 2015.
    [12] RIZKIANA J, GUAN G, WIDAYATNO W B, HAO X, LI X, HUANG W, ABUDULA A. Promoting effect of various biomass ashes on the steam gasification of low-rank coal[J]. Appl Energy, 2014, 133(6):282-288.
    [13] 谢克昌, 赵明举, 凌大琦.矿物质对煤焦表面性质和煤焦-CO2气化反应的影响[J].燃料化学学报, 1990, 18(4):316-323. http://www.cnki.com.cn/Article/CJFDTotal-RLHX199004004.htm

    XIE Ke-chang, ZHAO Ming-ju, LING Da-qi. Effect of mineral on the surface properties and the CO2-gasification of coal char[J]. J Fuel Chem Technol, 1990, 18(4):316-323. http://www.cnki.com.cn/Article/CJFDTotal-RLHX199004004.htm
    [14] KARIMI A, GRAY M R. Effectiveness and mobility of catalysts for gasification of bitumen coke[J]. Fuels, 2011, 90(1):120-125. doi: 10.1016/j.fuel.2010.07.032
    [15] TAKARADA T, ICHINOSE S, KATO K. Gasification of bituminous coal with K-exchanged brown coal prepared from potassium chloride[J]. Fuels, 1992, 71(8):883-887. doi: 10.1016/0016-2361(92)90237-I
    [16] KOWALSKI T, LUDWIG C, WOKAUN A. Qualitative evaluation of alkali release during the pyrolysis of biomass[J]. Energy Fuels, 2007, 21(5):3017-3022. doi: 10.1021/ef070094z
    [17] OLSSON J G, JÄLID U, PETTERSSON J B C, HAID P. Alkali metal emission during pyrolysis of biomass[J]. Energy Fuels, 1997, 11(4):779-784. doi: 10.1021/ef960096b
    [18] HOUGH D C, SANYAL A, ANNEN K D, GRUNINGER J H, STEWART G W. The development of an improved coal ash viscosity/temperature relationship for the assessment of slagging propensity in coal-fired boilers[J]. J Energy Inst, 1986, 59(439):77-81.
    [19] 韩艳娜, 王磊, 余江龙, 王冬梅, 尹丰魁.钙对褐煤热解和煤焦水蒸气气化反应性的影响[J].太原理工大学学报, 2013, 44(3):264-267. http://www.cnki.com.cn/Article/CJFDTOTAL-TYGY201303001.htm

    HAN Yan-na, WANG Lei, YU Jiang-long, WANG Dong-mei, YIN Feng-kui. Effect of calcium on the pyrolysis of lignite and the reactivity of coal char steam-gasification[J]. J Taiyuan Univ Technol, 2013, 44(3):264-267. http://www.cnki.com.cn/Article/CJFDTOTAL-TYGY201303001.htm
    [20] ZHANG Y, ASHIZAWA M, KAJITANI S, MIURA K. Proposal of a semi-empirical kinetic model to reconcile with gasification reactivity profiles of biomass chars[J]. Fuel, 2008, 87(4):475-481.
    [21] 竹怀礼, 王西明, 王兴军, 于广锁, 王辅臣. FT-IR和SEM用于煤阶对煤催化加氢气化影响的研究[J].燃料化学学报, 2014, 42(10):1197-1204. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18503.shtml

    ZHU Huai-li, WANG Xi-ming, WANG Xing-jun, YU Guang-suo, WANG Fu-chen. FT-IR and SEM study on the effect of coal rank on its catalytic hydrogasification[J]. J Fuel Chem Technol, 2014, 42(10):1197-1204. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18503.shtml
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  65
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-19
  • 修回日期:  2016-09-18
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-01-10

目录

    /

    返回文章
    返回