留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of pyridine extraction on the tar characteristics during pyrolysis of bituminous coal

LUO An-qi ZHANG Dan ZHU Ping QU Xuan ZHANG Jin-li ZHANG Jian-shu

骆安琪, 张丹, 朱平, 曲旋, 张金利, 张建树. 吡啶萃取对烟煤热解过程焦油生成特性的影响[J]. 燃料化学学报(中英文), 2017, 45(11): 1281-1288.
引用本文: 骆安琪, 张丹, 朱平, 曲旋, 张金利, 张建树. 吡啶萃取对烟煤热解过程焦油生成特性的影响[J]. 燃料化学学报(中英文), 2017, 45(11): 1281-1288.
LUO An-qi, ZHANG Dan, ZHU Ping, QU Xuan, ZHANG Jin-li, ZHANG Jian-shu. Effect of pyridine extraction on the tar characteristics during pyrolysis of bituminous coal[J]. Journal of Fuel Chemistry and Technology, 2017, 45(11): 1281-1288.
Citation: LUO An-qi, ZHANG Dan, ZHU Ping, QU Xuan, ZHANG Jin-li, ZHANG Jian-shu. Effect of pyridine extraction on the tar characteristics during pyrolysis of bituminous coal[J]. Journal of Fuel Chemistry and Technology, 2017, 45(11): 1281-1288.

吡啶萃取对烟煤热解过程焦油生成特性的影响

基金项目: 

the National Natural Science Foundation of China 21566033

the National Natural Science Foundation of China 21106087

the Start-Up Foundation for Young Scientists of Shihezi University rczx201013

详细信息
  • 中图分类号: TQ530.2

Effect of pyridine extraction on the tar characteristics during pyrolysis of bituminous coal

Funds: 

the National Natural Science Foundation of China 21566033

the National Natural Science Foundation of China 21106087

the Start-Up Foundation for Young Scientists of Shihezi University rczx201013

More Information
  • 摘要: 煤中含有以非共价键结合的可萃取物,煤的萃取物和萃余物热解反应性不同。本研究首先用醋酸消除煤中静电作用力,再以吡啶萃取消除氢键作用力,通过热重和固定床研究了煤萃取物和萃余物的热解特性。相对于原煤,萃取物(E1)的H/C原子比较高,而萃余物(R1)比原煤的孔径有所增大。热重实验表明,萃取物热分解温度低,失重率大;萃余物在485℃之前失重大于原煤,温度高于485℃小于原煤。固定床氮气热解表明,萃取物(E1)的焦油产率和气体比原煤高;萃余物(R1)的焦油产率低于原煤焦油产率。而氢气气氛下,萃取残渣的焦油产率明显高于原煤,这是由于吡啶萃余物具有更开放的孔结构,有利于加氢热解过程氢向孔内扩散,减少了缩聚反应。
    本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • Figure  1  Relation between n-alkane retention time and carbon number by GC

    Figure  2  Carbon number distribution of HS

    Figure  3  Thermogravimetric of coal and coal-derived materials

    Figure  4  Tar and char yields of coal and coal-derived materials

    Figure  5  The gas volume of coal and coal-derived materials

    Figure  6  Proportion of maltene and asphaltene in tar

    : maltene; : asphaltene

    Figure  7  Pyrolysis products of sample under N2 at different temperatures

    Figure  8  Pyrolysis products of sample under H2 at different temperatures

    Table  1  Proximate and ultimate analyses of SHZ coal sample

    Coal sample Proximate analysis wad/% Ultimate analysis wdaf/%
    M A V F C H N S O
    SHZ coal 3.07 5.63 32.99 58.31 79.94 4.76 1.25 0.41 13.64
    下载: 导出CSV

    Table  2  Yield of each fraction obtained from solvent extracts

    Sample Extract fraction wdaf/%
    HS TS TI
    E1 25.57 61.30 13.13
    下载: 导出CSV

    Table  3  Ultimate analyses of raw coal, extracts and residues

    Coal sample Ultimate analysis wdaf/% Atomic ratio
    C S H N Oa H/C O/H
    Raw coal 79.94 0.41 4.76 1.25 13.64 0.71 0.14
    AC 78.54 0.27 4.60 1.20 15.39 0.70 0.15
    R1 79.03 0.23 4.65 2.00 14.09 0.70 0.13
    E1 81.17 0.26 6.95 1.28 10.34 1.02 0.10
    a: by difference
    下载: 导出CSV

    Table  4  Porous structure of raw coal, AC and R1

    Analysis item Raw coal AC R1
    BET surface area A/(m2·g-1) 0.90 0.69 0.10
    pore size d/nm 12.80 15.69 60.63
    MIP pore area A/(m2·g-1) 7.30 7.23 7.03
    intrusion volume v/(mL·g-1) 0.70 0.70 0.78
    average pore diameter d/nm 38.14 38.77 44.23
    porosity /% 49.76 49.95 51.99
    Iodine numbers 70.2 60.2 192.0
    下载: 导出CSV
  • [1] AMIN M N, LI Y, LU X, ZHANG S. In situ catalytic pyrolysis of low rank coal for the conversion of heavy oils into light oils[J]. Adv Mater Sci Eng, 2017, 2017:1-8 https://www.hindawi.com/journals/amse/2017/5612852/
    [2] ZOU L, JIN L J, WANG X, HU H. Pyrolysis of Huolinhe lignite extract by in-situ pyrolysis-time of flight mass spectrometry[J]. Fuel Process Technol, 2015, 135:52-59. doi: 10.1016/j.fuproc.2014.10.011
    [3] GIVEN P H. The distribution of hydrogen in coals and its relation to coal structure[J]. Fuel, 1960, 39(7):147-153.
    [4] GIVEN P H, MARZEC A, BARTON W A, LYNCH L J, GERSTEIN B C. The concept of a mobile or molecular phase within the macromolecular network of coals:A debate[J]. Fuel, 1986, 65(2):155-163. doi: 10.1016/0016-2361(86)90001-3
    [5] NISHIOKA M. The associated molecular nature of bituminous coal[J]. Fuel, 1992, 71(8):941-948. doi: 10.1016/0016-2361(92)90246-K
    [6] CODY G D, DAVIS A, HATCHER P G. Physical structural characterization of bituminous coals:Stress-strain analysis in the pyridine-dilated state[J]. Energy Fuels, 1993, 7(4):455-462. doi: 10.1021/ef00040a003
    [7] CODY G D, DAVIS A, HATCHER P G. The dynamic nature of coal's macromolecular structure:Viscoelastic analysis of solvent-swollen coals[J]. Energy Fuels, 1993, 7(4):463-468. doi: 10.1021/ef00040a004
    [8] PANT L M, HUANG H, SECANELL M, LARTER S, MITRA S K. Multi scale characterization of coal structure for mass transport[J]. Fuel, 2015, 159:315-323. doi: 10.1016/j.fuel.2015.06.089
    [9] PAN J, LV M, BAI H, HOU Q, LI M. Effects of metamorphism and deformation on the coal macromolecular structure by laser Raman spectroscopy[J]. Energy Fuels, 2017, 31(2):1136-1146. doi: 10.1021/acs.energyfuels.6b02176
    [10] ⅡNO M. Network structure of coals and association behavior of coal-derived materials[J]. Fuel Process Technol, 2000, 62(2):89-101. doi: 10.1007/s00216-010-4328-x
    [11] SUZUKI M, NORINAGA K, ⅡNO M. Macroscopic observation of thermal behavior of concentrated solution of coal extracts[J]. Fuel, 2004, 83(16):2177-2182. doi: 10.1016/j.fuel.2004.06.006
    [12] HE W, LIU Z, LIU Q, SHI L, SHI X. Behavior of radicals during solvent extraction of three low rank bituminous coals[J]. Fuel Process Technol, 2017, 156:221-227. doi: 10.1016/j.fuproc.2016.10.029
    [13] LI Z K, WEI X Y, YANG Z S, YAN H L, WEI Z H. Characterization of extracts from geting bituminous coal[J]. Anal Lett, 2015, 48(9):1494-1501. doi: 10.1080/00032719.2014.989529
    [14] KIM K, CHO H, LEE S, MUN M, LEE D. Coal and solvent properties and their correlation with extraction yield under mild conditions[J]. Korean J Chem Eng, 2016, 33(7):2142-2159. doi: 10.1007/s11814-016-0062-1
    [15] AND D L W, SMITH E R. On the molecular-level interactions between pittsburgh No. 8 coal and several organic liquids[J]. Energy Fuels, 2003, 17(6):1423-1428. doi: 10.1021/ef030076r
    [16] NISHIOKA M, GEBHARD L A, SILBERNAGEL B G. Evidence for charge-transfer complexes in high-volatile bituminous coal[J]. Fuel, 1991, 70(3):341-348. doi: 10.1016/0016-2361(91)90120-Y
    [17] NISHIOKA M. Multistep extraction of coal[J]. Fuel, 1991, 70(12):1413-1419. doi: 10.1016/0016-2361(91)90007-W
    [18] WANG S K, WEI X Y, WANG Y G, ZHAN-KU LI, CHEN Y X. Compositional features of extracts from Shenmu char powder[J]. J Fuel Chem Technol, 2016, 44(1):1-6. doi: 10.1016/S1872-5813(16)30005-6
    [19] LI C, TOSHIMASA TAKANOHASHI A, SAITO I, AND HA, MASHIMO K. Elucidation of mechanisms involved in acid pretreatment and thermal extraction during ashless coal production[J]. Energy Fuels, 2004, 18(1):97-101. doi: 10.1021/ef0340054
    [20] BUSCH A, GENSTERBLUM Y. CBM and CO2-ECBM related sorption processes in coal:A review[J]. Int J Coal Geol, 2011, 87(2):49-71. doi: 10.1016/j.coal.2011.04.011
    [21] JI H, LI Z, YANG Y, HU S, PENG Y. Effects of organic micromolecules in coal on its pore structure and gas diffusion characteristics[J]. Transport Porous Med, 2015, 107(2):419-433. doi: 10.1007/s11242-014-0446-9
    [22] JI H, LI Z, PENG Y, YANG Y, TANG Y. Pore structures and methane sorption characteristics of coal after extraction with tetrahydrofuran[J]. J Nat Gas Sci Eng, 2014, 19(7):287-294.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  24
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-14
  • 修回日期:  2017-09-22
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-11-10

目录

    /

    返回文章
    返回