留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同吸附剂上动态吸附-脱附挥发性有机气体性能研究

岳旭 王胜 刘旭 李德意 王树东 王建成 郝兵元

岳旭, 王胜, 刘旭, 李德意, 王树东, 王建成, 郝兵元. 不同吸附剂上动态吸附-脱附挥发性有机气体性能研究[J]. 燃料化学学报(中英文), 2020, 48(1): 120-128.
引用本文: 岳旭, 王胜, 刘旭, 李德意, 王树东, 王建成, 郝兵元. 不同吸附剂上动态吸附-脱附挥发性有机气体性能研究[J]. 燃料化学学报(中英文), 2020, 48(1): 120-128.
YUE Xu, WANG Sheng, LIU Xu, LI De-yi, WANG Shu-dong, WANG Jian-cheng, HAO Bing-yuan. Dynamic adsorption and desorption of volatile organic compounds on different adsorbents[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 120-128.
Citation: YUE Xu, WANG Sheng, LIU Xu, LI De-yi, WANG Shu-dong, WANG Jian-cheng, HAO Bing-yuan. Dynamic adsorption and desorption of volatile organic compounds on different adsorbents[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 120-128.

不同吸附剂上动态吸附-脱附挥发性有机气体性能研究

基金项目: 

国家重点研发计划 2016YFC0204302

国家自然科学基金 21676267

详细信息
  • 中图分类号: X511

Dynamic adsorption and desorption of volatile organic compounds on different adsorbents

Funds: 

the National Key Research and Development Program of China 2016YFC0204302

National Natural Science Foundation of China 21676267

More Information
  • 摘要: 采用气相色谱法和热重分析(TG)研究了活性炭以及5A、NaY、13X、ZSM-5(SiO2/Al2O3=27、300)、Hβ和MCM-41分子筛对正己烷、甲苯和乙酸乙酯的动态吸附-脱附性能,系统考察了挥发性有机气体(VOCs)浓度与种类及体积空速对吸附容量的影响。结果表明,增加体积空速和VOCs浓度,一定程度上能够提升吸附容量;活性炭吸附剂对三种VOCs具有较高的单位质量吸附量,而13X与NaY对三种VOCs具有更大的单位体积吸附量。
  • 图  1  吸附实验装置示意图

    Figure  1  Experiment setup of the adsorption system

    1: shut-off valves; 2: mass flowmeter; 3: VOCs saturator; 4: ice bath; 5: mixing tank; 6: three-way valve; 7: temperature sensors; 8: pressure sensors; 9: adsorption bed; 10: thermal conductivity detector; 11: soap film flowmeter; 12: gas chromatography with FID detector

    图  2  几种吸附剂的TG曲线

    Figure  2  TG curves of several adsorbents in argon with a heating rate of 10 ℃/min

    图  3  吸附剂的吸附-脱附等温线

    Figure  3  Adsorption-desorption isotherms of various adsorbents

    图  4  不同条件下活性炭吸附甲苯的穿透曲线

    Figure  4  Breakthrough curves of toluene adsorption on activated carbon under different conditions

    (a): at different volumetric space velocities; (b): at different concentrations

    图  5  不同温度下吸附剂的吸附量

    Figure  5  Adsorption capacity of various adsorbents at different temperatures

    (a): n-hexane as the adsorbate; (b): ethyl acetate as the adsorbate

    图  6  吸附剂在不同VOCs条件下的吸附穿透曲线

    Figure  6  Breakthrough curves of different VOCs on adsorbents

    (a): n-hexane; (b): toluene; (c): ethyl acetate
    a: 13X; b: NaY; c: Hβ; d: 5A; e: ZSM-5(300); f: ZSM-5(27); g: MCM-41; h: AC

    图  7  不同VOCs在吸附剂上饱和吸附后的TG曲线

    Figure  7  TG curves of different VOCs on adsorbents after saturated adsorption

    (a): n-hexane; (b): toluene; (c): ethyl acetate; (d): different VOC on AC

    表  1  吸附剂的结构性质

    Table  1  Structural characteristics of various adsorbents

    SampleABET
    /(m2·g-1)
    Amicro
    /(m2·g-1)
    Ameso
    /(m2·g-1)
    vmicro
    /(cm3·g-1)
    vtotal
    /(cm3·g-1)
    dpore/nm
    5A449.2303.6145.50.090.2480.552
    13X635.3574.261.20.210.310.793-1.093
    NaY582.9506.076.90.1860.3180.755-1.093
    ZSM-5(27)287.6226.461.20.0820.2020.612-1.686
    ZSM-5(300)345.7284.361.30.1050.2260.522-0.913
    Hβ
    377.7
    151.9
    225.8
    0.047
    0.347
    0.642-1.198,
    2.736-5.514
    AC1720.81191.4529.50.4821.230.501-5.688
    MCM-411053.8-1053.8-0.9524.093
    下载: 导出CSV

    表  2  VOCs物理性质参数[6, 7]

    Table  2  Physical properties of various VOCs

    VOCsMolecular
    weight
    Kinetic
    diameter d/nm
    Boiling point
    t/℃
    Saturation vapor
    pressure p/kPa (20 ℃)
    Polarizability
    ×1025/cm3
    Dipole moment
    /D
    n-hexane86.180.4368.7216.161190
    Toluene92.140.53110.602.911230.38
    Ethyl acetate88.100.5277.1010.10971.78
    下载: 导出CSV

    表  3  活性炭于不同空速或VOCs质量浓度条件下对甲苯的吸附性能

    Table  3  Adsorption performance of toluene on activated carbon at different space velocities and VOCs concentrations

    ConditionsSaturated adsorption
    capacity at 25 ℃/(mg·g-1)
    Desorption efficiency
    at 120 ℃*/%
    volumetric space velocity /h-1concentration of toluene /(mg·m-3)
    80001200264.5491.22
    120001200271.5988.45
    160001200296.2680.22
    16000800286.4086.17
    160001200296.1581.48
    160001600305.6672.83
    *: the results are calculated from data of TG
    下载: 导出CSV

    表  4  吸附剂25 ℃的吸附量及不同温度下的脱附率

    Table  4  Adsorption capacities of various adsorbents at 25 ℃ and desorption efficiencies at different temperatures

    Adsorbent-adsorbateSaturated
    adsorption capacity
    at 25 ℃/(mg·g-1)
    Desorption
    efficiency
    at 200 ℃ /%
    Desorption
    efficiency
    at 250 ℃ /%
    Desorption
    efficiency
    at 300 ℃ /%
    13X-n-hexane128.7085.0785.2492.42
    13X-toluene196.5252.8579.2482.92
    13X-ethyl acetate221.0732.0841.5952.43
    NaY-n-hexane110.5393.1198.2898.91
    NaY-toluene153.2846.2282.8283.51
    NaY-ethyl acetate172.6938.0956.5885.83
    Hβ-n-hexane71.6491.1191.7991.95
    Hβ-toluene97.1482.7683.3483.60
    Hβ-ethyl acetate123.0166.3373.6176.47
    5A-n-hexane99.4187.5088.4988.62
    5A-toluene9.5696.4498.95103.14
    5A-ethyl acetate18.967.8378.52104.06
    ZSM-5(300)-n-hexane94.5977.0478.0178.31
    ZSM-5(300)-toluene58.8390.6792.3793.27
    ZSM-5(300)-ethyl acetate166.8050.1551.7453.26
    ZSM-5(27)-n-hexane77.0177.7079.8280.51
    ZSM-5(27)-toluene48.6393.0596.1197.47
    ZSM-5(27)-ethyl acetate146.638.2146.9650.39
    MCM-41-n-hexane12.9595.29103.26105.74
    MCM-41-toluene58.3083.8685.3595.01
    MCM-41-ethyl acetate151.575.6176.8277.85
    --Desorption
    efficiency
    at 80 ℃ /%
    Desorption
    efficiency
    at 100 ℃ /%
    Desorption
    efficiency
    at 120 ℃ /%
    AC-n-hexane200.0782.5883.7583.76
    AC-toluene305.6659.0768.3372.83
    AC-ethyl acetate229.4873.1381.0183.73
    下载: 导出CSV
  • [1] YANG C, MIAO G, PI Y, XIA Q, WU J, LI Z, XIAO J. Abatement of various types of VOCs by adsorption/catalytic oxidation:A review[J]. Chem Eng J, 2019, 370:1128-1153. doi: 10.1016/j.cej.2019.03.232
    [2] 王志伟, 裴多斐, 于丽平. VOCs控制与处理技术综述[J].环境与发展, 2017, 29(1):1-4. http://d.old.wanfangdata.com.cn/Periodical/nmghjbh201701015

    WANG Zhi-wei, PEI Duo-fei, YU Li-ping. A review of the control and treatment techniques of volatile organic compounds[J]. Environ Dev, 2017, 29(1):1-4. http://d.old.wanfangdata.com.cn/Periodical/nmghjbh201701015
    [3] 张永明, 邓娟, 梁健.工业源VOCs末端治理技术浅析及减排展望[J].环境影响评价, 2018, 40(2):46-50. http://d.old.wanfangdata.com.cn/Periodical/sxhjyst201802012

    ZHANG Yong-ming, DENG Juan, LIANG jian. The analysis and prospect of industrial VOCs terminal treatment techniques[J]. Environ Impact Assess, 2018, 40(2):46-50. http://d.old.wanfangdata.com.cn/Periodical/sxhjyst201802012
    [4] 李照海, 羌宁, 刘涛, 何娇, 曹翌奇, 陈昊坤.活性炭和沸石分子筛处理非稳定排放VOCs气体的性能比较[J].环境工程学报, 2017, 11(5):2933-2939. http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb201705047

    LI Zhao-hai, QIANG Ning, LIU Tao, HE Jiao, CAO Yi-qi, CHEN Hao-kun. Competitive adsorption and desorption of unsteady emission VOCs on activated carbon and zeolites[J]. Chin J Environ Eng, 2017, 11(5):2933-2939. http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb201705047
    [5] THOMMES M, KANEKO K, NEIMARK A, OLIVIER J, RODRIGUEZ-REINOSO F, ROUQUEROL J, SING K. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure Appl Chem, 2015, 87(9/10):1051-1069. http://www.researchgate.net/publication/282624978_Physisorption_of_gases_with_special_reference_to_the_evaluation_of_surface_area_and_pore_size_distribution_(IUPAC_Technical_Report)
    [6] GOKEL G W. Dean's Handbook of Organic Chemistry[M]. 2nd ed. New York:McGraw-Hill, 2004:415-454.
    [7] LI J R, KUPPLER R J, ZHOU H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chem Soc Rev, 2009, 38(5):1477-1504. doi: 10.1039/b802426j
    [8] 李守信, 陈青松, 罗鑫, 张智文, 曾华英.吸附法处理VOCs脱附温度的选择[J].中国环保产业, 2018, (3):48-50. doi: 10.3969/j.issn.1006-5377.2018.03.012

    LI Shou-xin, CHEN Qing-song, LUO Xin, ZHANG Wen-zhi, ZENG hua-ying. Determination on desorbing temperature of VOCs treated by adsorption method[J]. China Environ Prot Ind, 2018, (3):48-50. doi: 10.3969/j.issn.1006-5377.2018.03.012
    [9] EVERETT D H, POWL J C. Adsorption in slit-like and cylindrical micropores in the henry's law region. A model for the microporosity of carbons[J]. J Chem Soc, Faraday Trans I, 1976, 72:619-636.
    [10] 黄海凤, 戎文娟, 顾勇义, 常人芹, 卢晗锋. ZSM-5沸石分子筛吸附-脱附VOCs的性能研究[J].环境科学学报, 2014, 34(12):3144-3151. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201412026

    HUANG Hai-feng, RONG Wen-juan, GU Yong-yi, CHANG Ren-qin, LU Han-feng. Adsorption and desorption of VOCs on the ZSM-5 zeolite[J]. Acta Sci Circumst, 2014, 34(12):3144-3151. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201412026
    [11] 杨祖保(美).吸附剂原理与应用[M].北京:高等教育出版社, 2010:8-112.

    Ralph T Yang. Adsorbents Fundamentals and Applications[M]. Beijing:Higher Education Press, 2010:8-112.
    [12] SUHAS, GUPTA V K, CARROTT P J M, SINGH R, CHAUDHARY M, KUSHWAHA S. Cellulose:A review as natural, modified and activated carbon adsorbent[J]. Bioresour Technol, 2016, 216:1066-1076. doi: 10.1016/j.biortech.2016.05.106
    [13] 陈翔.多级孔道5A分子筛的合成及吸附性能研究[D].上海: 华东理工大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10251-1016097662.htm

    CHEN Xiang. The synthesis and adsorption performance of hierarchical 5A zeolites[D]. Shanghai: East China University of Science and Technology, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10251-1016097662.htm
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  246
  • HTML全文浏览量:  184
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-21
  • 修回日期:  2019-12-02
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-01-10

目录

    /

    返回文章
    返回