留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性SiO2对铁基催化剂H2、CO吸附及加氢性能的影响

梁坤 张成华 相宏伟 杨勇 李永旺

梁坤, 张成华, 相宏伟, 杨勇, 李永旺. 改性SiO2对铁基催化剂H2、CO吸附及加氢性能的影响[J]. 燃料化学学报(中英文), 2019, 47(7): 769-779.
引用本文: 梁坤, 张成华, 相宏伟, 杨勇, 李永旺. 改性SiO2对铁基催化剂H2、CO吸附及加氢性能的影响[J]. 燃料化学学报(中英文), 2019, 47(7): 769-779.
LIANG Kun, ZHANG Cheng-hua, XIANG Hong-wei, YANG Yong, LI Yong-wang. Effects of modified SiO2 on H2 and CO adsorption and hydrogenation of iron-based catalysts[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 769-779.
Citation: LIANG Kun, ZHANG Cheng-hua, XIANG Hong-wei, YANG Yong, LI Yong-wang. Effects of modified SiO2 on H2 and CO adsorption and hydrogenation of iron-based catalysts[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 769-779.

改性SiO2对铁基催化剂H2、CO吸附及加氢性能的影响

基金项目: 

国家自然科学基金重大研究计划 91545109

详细信息
  • 中图分类号: TQ529.2

Effects of modified SiO2 on H2 and CO adsorption and hydrogenation of iron-based catalysts

Funds: 

the Major Research Program of National Natural Science Foundation of China 91545109

More Information
  • 摘要: 采用溶胶凝胶方法通过掺杂修饰剂MM=Mn、Zn、Zr、Sr)制备出改性SiO2载体,再用浸渍法将Fe元素负载于该载体上制成系列催化剂。采用X射线衍射(XRD)、氮气物理吸附-脱附、X射线光电子能谱(XPS)等手段表征了催化剂的织构性质、晶相组成和电子性质。利用程序升温手段研究了催化剂的H2还原吸附性质和CO加氢性能。借助动力学分析方法研究了催化剂与H之间的相互作用。结果表明,少量掺杂的修饰剂对催化剂的Fe物相组成以及表面Fe物种电子状态基本没有影响,但降低了催化剂的比表面积以及活性相分散度,削弱了对H2的吸附能力,降低催化剂的H2脱附活化能。Zn、Zr的掺杂抑制了催化剂的还原,而Mn、Sr的掺杂却促进催化剂的还原。Mn、Zn、Zr的掺杂抑制催化剂表面CO的解离吸附,Sr则促进CO的解离吸附,Mn、Zn、Zr、Sr均促进低温区间C-C耦合和加氢反应,其中,Mn、Zr促进加氢的作用更显著。
  • 图  4  催化剂的H2-TPD谱图

    Figure  4  H2-TPD patterns of prepared catalysts

    (a): Fe/SiO2; (b): Fe/Mn-SiO2; (c): Fe/Zn-SiO2; (d): Fe/Zr-SiO2; (e): Fe/Sr-SiO2; (f): 10 ℃/min

    图  1  催化剂的氧化态(a)以及还原态(b)的XRD谱图

    Figure  1  X-ray diffraction patterns of (a) fresh catalysts and (b) reduced catalysts

    图  2  催化剂的XPS谱图

    Figure  2  XPS spectra of catalysts

    (a): Fe 2p; (b): Fe 3p; (c): Si 2p

    图  3  催化剂的H2-TPR谱图

    Figure  3  H2-TPR patterns of prepared catalysts

    图  5  催化剂的H2脱附动力学分析曲线

    Figure  5  H2 desorption kinetic analysis profiles of prepared catalysts

    图  6  Fe/SiO2催化剂的CO-TPH谱图

    Figure  6  CO-TPH patterns of Fe/SiO2 catalysts

    (a): CH4; (b): C2H6; (c): H2O; (d): CO; (e): CO2

    图  7  产物甲烷的CO-TPH谱图

    Figure  7  CO-TPH patterns of CH4

    图  8  产物乙烷的CO-TPH谱图

    Figure  8  CO-TPH patterns of C2H6

    图  9  产物水的CO-TPH谱图

    Figure  9  CO-TPH patterns of H2O

    图  10  CO和CO2的CO-TPH谱图

    Figure  10  CO-TPH patterns of CO and CO2

    表  1  不同催化剂的织构参数和晶粒粒径

    Table  1  Texture parameters and particle size of catalysts

    Sample Surface area A/(m2·g-1) Pore volume v/(cm3·g-1) Average pore size d/nm Crystallite size d/nma
    Fe/SiO2 525 0.67 5.1 8.8
    Fe/Mn-SiO2 483 0.80 6.6 9.9
    Fe/Zn-SiO2 462 0.63 5.5 9.4
    Fe/Zr-SiO2 477 0.54 4.5 9.3
    Fe/Sr-SiO2 362 0.76 8.4 9.8
    a: determined by XRD of the fresh catalysts with the diffraction line of 2θ at 41.6° for α-Fe2O3
    下载: 导出CSV

    表  2  催化剂表面存在的部分基元反应

    Table  2  A partial elementary reactions on the surface of catalyst

    Surface reaction of catalyst Reaction equation
    H2 dissociation adsorption H2+2M→2M-H
    CO molecular adsorption CO+MM-CO
    CO dissociation adsorption 2M+CO→M-C+M-O
    Formation and hydrogenation of methine groups M-C+ M-H→M-CH+M
    M-CH+ M-H→M-CH2+M
    M-CH2+ M-H→M-CH3+M
    M-CH3+ M-H→CH4+2M
    Hydroxylation M-O+ M-H→M-OH+M
    Formation and hydrogenation of aldehyde group (alcohol species) M-CO+ M-H→M-COH+M
    M-CO+ M-H→M-CHO+M
    M-COH+ M-H→M-CHOH+M
    M-CHO+ M-H→M-CHOH+M
    Formation of C2 alkanes M-CH3+ M=CH2M-CH2-CH3+M
    M=CH2+ M=CH2M=CH-CH3+M
    M-CH2-CH3+M-H→CH3-CH3+2M
    M=CH-CH3+M-H→CH3-CH3+2M
    下载: 导出CSV
  • [1] DRY M E. The Fischer-Tropsch process:1950-2000[J]. Catal Today, 2002, 71(3):227-241. doi: 10.1016-S0920-5861(01)00460-6/
    [2] DRY M E. Present and future applications of the Fischer-Tropsch process[J]. Appl Catal A:Gen, 2004, 276(1):1-3. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=14d6b271ba0eb9658f0fde9fd461a89e
    [3] ZHANG Q H, KANG J C, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis:Tuning the product selectivity[J]. ChemCatChem, 2010, 2(9):1030-1058. doi: 10.1002/cctc.201000071
    [4] ZHANG Q H, DENG W P, WANG Y. Recent advances in understanding the key catalyst factors for Fischer-Tropsch synthesis[J]. J Energy Chem, 2013, 22(1):27-38.
    [5] DE SMIT E, SWART I, CREEMER J F, HOVELING G H, GILLES M K, TYLISZCZAK T, KOOYMAN P J, ZANDBERGEN H W, MORIN C, WECKHUYSEN B M, DE GROOT F. Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy[J]. Nature, 2008, 456(7219):222-225. doi: 10.1038/nature07516
    [6] CHANG Q, ZHANG C H, LIU C W, WEI Y X, AJIN V C, IULIAN DUGULAN A, NIEMANTSVERDRIET J W, LIU X W, He Y R, QING M, ZHENG L R, YUN Y F, YANG Y, LI Y W. Relationship between iron carbide phases (ε-Fe2C, Fe7C3, and x-Fe5C2) and catalytic performances of Fe/SiO2 Fischer-Tropsch catalysts[J]. ACS Catal, 2018, 8(4):3304-3316. doi: 10.1021/acscatal.7b04085
    [7] DE SMIT E, BEALE A M, NIKITENTO S, WECKHUYSEN B M. Local and long range order in promoted iron-based Fischer-Tropsch catalysts:A combined in situ X-ray absorption spectroscopy/wide angle X-ray scattering study[J]. J Catal, 2009, 262(2):244-256.
    [8] DE SMIT E, CINQUINI F, BEALE A M. Stability and reactivity of ε-x-θ iron carbide catalyst phases in Fischer-Tropsch synthesis:Controlling μC[J]. J Am Chem Soc, 2010, 132(42):14928-14941. doi: 10.1021/ja105853q
    [9] SUO H Y, WANG S G, ZHANG C H, XU J, WU B S, YANG Y, XIANG H W, LI Y W. Chemical and structural effects of silica in iron-based Fischer-Tropsch synthesis catalysts[J]. J Catal, 2012, 286(3):111-123. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b4aea61b0d5e5304a3dc21ee95051543
    [10] 陈嘉宁, 刘永梅. K、Mn助剂协同效应对Fe基催化剂上CO加氢制低碳烯烃反应性能的影响[J].燃料化学学报, 2013, 41(12):1488-1494. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18316.shtml

    CHEN Jia-ning, LIU Yong-mei. Effects of Mn-K synergistic action on iron-based catalyst for CO hydrogenation to light olefins[J]. J Fuel Chem Technol, 2013, 41(12):1488-1494. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18316.shtml
    [11] TAO Z C, YANG Y, ZHANG C H, LI T Z, DING M Y, XIANG H W, LI Y W. Study of manganese promoter on a precipitated iron-based catalyst for Fischer-Tropsch synthesis[J]. J Nat Gas Chem, 2007, 16(3):278-285. doi: 10.1016/S1003-9953(07)60060-7
    [12] SAGLAM M. Effects of vanadium and zinc promotion on the olefin selectivity of iron Fischer-Tropsch catalysts[J]. Ind Eng Chem Res, 1989, 28(2):150-154. doi: 10.1021/ie00086a004
    [13] GAO X H, ZHANG J L, CHEN N, MA Q X, FAN S B, ZHAO T S, TSUBAKI N. Effects of zinc on Fe-based catalysts during the synthesis of light olefins from the Fischer-Tropsch process[J]. Chin J Catal, 2016, 37(4):510-516. doi: 10.1016/S1872-2067(15)61051-8
    [14] LI S Z, LI A W, KEISHNAMOORTHY S, IGLESIA E. Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer-Tropsch synthesis catalysts[J]. Catal Lett, 2001, 77(4):197-205.
    [15] QING M, YANG Y, WU B, XU J, ZHANG C H, GAO P, LI Y W. Modification of Fe-SiO2 interaction with zirconia for iron-based Fischer-Tropsch catalysts[J]. J Catal, 2011, 279(1):111-122. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=af3c56913fdd235730b955f1995c9bd0
    [16] LI J F, ZHANG C H, CHENG X F, QING M, XU J, WU B S, YANG Y, LI Y W. Effects of alkaline-earth metals on the structure, adsorption and catalytic behavior of iron-based Fischer-Tropsch synthesis catalysts[J]. Appl Catal A:Gen, 2013, 464/465(16):10-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=92f0bad1254e1cab9318405b8d1289bc
    [17] AMENOMIYA Y, CVETANOVIC R J. Application of flash-desorption method to catalyst studies. Ⅰ. Ethylene-alumina system[J]. J Phys Chem, 1963, 67(1):2046-2049.
    [18] KOMERS R, AMENOMIYA Y, CVETANOVIC R J. Study of metal catalysts by temperature programmed desorption:Ⅰ. Chemisorption of ethylene on silica-supported platinum[J]. J Catal, 1969, 15(3):293-300.
    [19] LIN H Q, QU H Y, CHEN W K, XU K, ZHENG J W, DUAN X P, ZHAI H S, YUAN Y Z. Promoted chemoselective crotonaldehyde hydrogenation on zirconia-doped SiO2 supported Ag catalysts:Interfacial catalysis over ternary Ag-ZrO2-SiO2 interfaces[J]. J Catal, 2019, 372(4):19-32.
    [20] YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Appl Surf Sci, 2008, 254(8):2441-2449. doi: 10.1016/j.apsusc.2007.09.063
    [21] WACHS I E, DWYER D J, IGLESIA E. Characterization of Fe, Fe-Cu, and Fe-Ag Fischer-Tropsch catalysts[J]. Appl Catal, 1984, 12(2):201-217.
    [22] XU J, BARTHOLOMEW C H, SUDWEEKS J, EGGET D L. Design, synthesis, and catalytic properties of silica-supported, Pt-promoted iron Fischer-Tropsch catalysts[J]. Top Catal, 2003, 26(1/4):55-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=27f310d556173b2863c2bf2f2402ce45
    [23] ZHANG C H, YANG Y, TENG B T, LI T Z, XIANG H W, LI Y W. Study of an iron-manganese Fischer-Tropsch synthesis catalyst promoted with copper[J]. J Catal, 2006, 237(2):405-415.
    [24] HARKNESS R W, EMMETT P H. Two types of activated adsorption of hydrogen on the surface of a promoted iron synthetic ammonia catalyst[J]. J Am Chem Soc, 1934, 56(2):490-491.
    [25] WALCH S P. Model studies of the interaction of H atoms with BCC iron[J]. Surf Sci, 1984, 143(1):188-203. doi: 10.1016/0039-6028(84)90418-7
    [26] BLYHOLDER G, NEFF L D. Infrared study of the interaction of carbon monoxide and hydrogen on silica-supported iron[J]. J Phys Chem, 1962, 66(9):1664-1667. doi: 10.1021/j100815a024
    [27] WANG T, WANG S G, LUO Q Q, LI Y W, WANG J G, BELLER M, JIAO H J. Hydrogen adsorption structures and energetics on iron surfaces at high coverage[J]. J Phys Chem C, 2014, 118(8):4181-4188. doi: 10.1021/jp410635z
    [28] ROFER-DEPOORTER C K. A comprehensive mechanism for the Fischer-Tropsch synthesis[J]. Chem Rev, 1981, 81(5):447-474. doi: 10.1021/cr00045a002
    [29] MUETTERTIES E L, STEIN J. Mechanistic features of catalytic carbon monoxide hydrogenation reactions[J]. Chem Rev, 1979, 79(6):479-490. doi: 10.1021/cr60322a001
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  29
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-19
  • 修回日期:  2019-04-24
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-07-10

目录

    /

    返回文章
    返回