留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矿物质氧化物对燃煤烟气中砷/铅的吸附特性研究

余圣辉 张成 袁昌乐 马仑 方庆艳 陈刚

余圣辉, 张成, 袁昌乐, 马仑, 方庆艳, 陈刚. 矿物质氧化物对燃煤烟气中砷/铅的吸附特性研究[J]. 燃料化学学报(中英文), 2020, 48(11): 1345-1355.
引用本文: 余圣辉, 张成, 袁昌乐, 马仑, 方庆艳, 陈刚. 矿物质氧化物对燃煤烟气中砷/铅的吸附特性研究[J]. 燃料化学学报(中英文), 2020, 48(11): 1345-1355.
YU Sheng-hui, ZHANG Cheng, YUAN Chang-le, MA Lun, FANG Qing-yan, CHEN Gang. Study on arsenic/lead adsorption characteristics by mineral oxides in coal-fired flue gas[J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1345-1355.
Citation: YU Sheng-hui, ZHANG Cheng, YUAN Chang-le, MA Lun, FANG Qing-yan, CHEN Gang. Study on arsenic/lead adsorption characteristics by mineral oxides in coal-fired flue gas[J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1345-1355.

矿物质氧化物对燃煤烟气中砷/铅的吸附特性研究

基金项目: 

国家重点研发计划 2018YFB0605105

详细信息
  • 中图分类号: Q534.9

Study on arsenic/lead adsorption characteristics by mineral oxides in coal-fired flue gas

Funds: 

National Key Research and Development Programme of China 2018YFB0605105

More Information
  • 摘要: 选取典型的矿物质氧化物为吸附剂,在两段式固定床反应器中研究了模拟烟气气氛下吸附剂吸附As2O3、PbO的特性,吸附反应的原子态密度、吸附位、吸附能等通过密度泛函理论(DFT)计算获得。结果表明,CaO的砷吸附容量最大,900 ℃吸附砷容量为5.25 mg/g;其次是Fe2O3、MgO、Al2O3,吸附的砷以As3+和As5+的砷酸盐形式存在,高岭土和飞灰具有较大的PbO吸附容量,最大吸附容量分别为6.69和2.75 mg/g;其次是SiO2和Al2O3,并且50%SiO2/50%Al2O3混合吸附剂的铅吸附容量高于单一氧化物,吸附剂表面O原子是As2O3的吸附活性位点,吸附剂暴露的不饱和Si和Al原子是PbO的吸附活性位点,此外温度、烟气气氛对吸附容量和吸附产物有显著影响。
  • 图  1  铅吸附反应实验装置示意图

    Figure  1  Lead adsorption reaction experimental device

    图  2  计算使用的分子结构

    Figure  2  Structures of molecules used in calculations

    图  3  300-900℃下矿物质氧化物的砷吸附容量

    Figure  3  Arsenic adsorption capacity of mineral oxides at 300-900 ℃

    图  4  矿物质氧化物的微观形貌

    Figure  4  Micromorphology of mineral oxides

    图  5  吸附剂吸附As2O3反应前后的结构示意图

    Figure  5  Structure diagram of sorbents before and after adsorbing As2O3

    1: before adsorption; 2: after adsorption; a: CaO; b: Na2O; c: MgO; d: Fe2O3; e: Al2O3; f: SiO2

    图  6  700 ℃吸附砷样品的XRD谱图

    Figure  6  XRD patterns of samples with adsorbed arsenic at 700 ℃

    图  7  CaO在700 ℃吸附砷的As 3d XPS谱图

    Figure  7  As 3d XPS spectra of CaO sorbent at 700 ℃

    图  8  900 ℃下矿物质氧化物的铅吸附容量

    Figure  8  Lead adsorption capacity of mineral oxides at 900 ℃

    图  9  700-1200 ℃下Si/Al基吸附剂的铅吸附容量

    Figure  9  Lead adsorption capacity of Si/Al-based sorbents at 700-1200 ℃

    图  10  900 ℃下高温煅烧Si/Al基吸附剂的铅吸附容量

    Figure  10  Lead adsorption capacity of high temperature calcined Si/Al-based sorbents at 900 ℃

    图  11  SiO2(001)和Al2O3(100)吸附PbO的稳定构型

    Figure  11  Stable structure of PbO adsorption on SiO2(001) and Al2O3(100) surfaces

    图  12  Al2O3(100)面掺杂Si后吸附PbO的稳定构型

    Figure  12  Stable structure of PbO adsorption on the Al2O3(100) surface after doping with Si

    图  13  Al2O3(100)面吸附PbO的态密度

    Figure  13  Density of states of PbO adsorbed on the Al2O3(100) surface

    a: three-coordinated doped Si; b: two-coordinated doped Si; 1: O in PbO; 2: doped Si; 3: Al; 4: Pb in PbO; 5: O on the surface

    图  14  SiO2在1000 ℃吸附PbO样品Pb 4f XPS谱图

    Figure  14  Pb 4f XPS spectra of SiO2 with adsorbed PbO at 1000 ℃

    表  1  氧化物吸附剂的结构特性

    Table  1  Structure properties of the oxide sorbents investigated

    SampleStructure properties
    surface area A/(m2·g-1)pore diameter d/nmpore volumev/(×10-2 cm3·g-1)
    CaO5.2723.343.08
    MgO4.7119.780.21
    Na2O3.6210.180.74
    Fe2O311.7918.013.06
    Al2O31.657.910.12
    SiO21.878.930.11
    下载: 导出CSV

    表  2  吸附剂吸附砷的吸附能

    Table  2  Adsorption energy of sorbents for adsorbing arsenic

    SurfaceAdsorption energy E/(kJ·mol-1)
    CaO(001)-216.63
    MgO(100)-170.21
    Na2O(110)-336.98
    Fe2O3(001)-358.00
    Al2O3(100)-203.23
    SiO2(001)-156.40
    下载: 导出CSV

    表  3  不同温度下SiO2(001)吸附PbO的ΔG

    Table  3  ΔG of SiO2(001) adsorbing PbO

    Temperature T/KΔG /(kJ·mol-1)
    300-173.36
    800-133.47
    130011.02
    180032.42
    下载: 导出CSV
  • [1] CHEN J, LIU G, KANG Y, WU B, SUN R, ZHOU C, WU D. Atmospheric emissions of F, As, Se, Hg, and Sb from coal-fired power and heat generation in China[J]. Chemosphere, 2013, 90(6): 1925-1932. http://www.sciencedirect.com/science/article/pii/S0045653512012714
    [2] Environmental Protection Agency. Locating and estimating air emissions from sources of arsenic and arsenic compounds: Final Report[R]. United States: EPA, 1998.
    [3] 刘慧敏, 王春波, 郭永成, 张月, 黄星智, 王家伟.高砷褐煤与低砷烟煤混燃砷的挥发特性及模型[J].化工学报, 2016, 67(10), 4477-4484. http://d.wanfangdata.com.cn/Periodical/hgxb201610055

    LIU Hui-min, WANG Chun-bo, GUO Yong-cheng, ZHANG Yue, HUANG Xing-zhi, WANG Jia-wei. Experimental and modeling study on arsenic volatilization during co-combustion of high arsenic lignite and low arsenic bituminous coal[J]. CIESC J, 2016, 67(10): 4477-4484. http://d.wanfangdata.com.cn/Periodical/hgxb201610055
    [4] WANG C, ZHANG Y, SHI Y, LIU H, ZOU C, WU H, KANG X. Research on collaborative control of Hg, As, Pb and Cr by electrostatic-fabric-integrated precipitator and wet flue gas desulphurization in coal-fired power plants[J]. Fuel, 2017, 210: 527-534. https://www.sciencedirect.com/science/article/pii/S0016236117310694
    [5] TIAN H, WANG Y, XUE Z, QU Y, CHAI F, HAO J. Atmospheric emissions estimation of Hg, As, and Se from coal-fired power plants in China[J]. Sci Total Environ, 2011, 409(16): 3078-3081. http://www.sciencedirect.com/science/article/pii/S004896971100427X
    [6] 方婷, 煤矿区中铅的环境地球化学研究[D].合肥: 中国科学技术大学, 2015.

    FANG Ting. Environmental geochemistry of lead in coal mining area[D]. Hefei: University of Science and Technology of China, 2015.
    [7] CHEN L, ZHOU S, WU S, WANG C, HE D. Concentration, fluxes, risks, and sources of heavy metals in atmospheric deposition in the Lihe River watershed, Taihu region, eastern China[J]. Environ Pollut, 2019, 255: 113301. https://www.sciencedirect.com/science/article/pii/S0269749119334165
    [8] WANG J, ZHANG Y, LIU Z, NORRIS P, ROMERO C E, XU H, PAN W. Effect of coordinated air pollution control devices in coal-fired power plants on arsenic emissions[J]. Energy Fuels, 2017, 31(7): 7309-7316. doi: 10.1021/acs.energyfuels.7b00711
    [9] OLIVEIRA M L, IZQUIERDO M, QUEROL X, LIEBERMAN R N, SAIKIA B K, SILVA L F. Nanoparticles from construction wastes: A problem to health and the environment[J]. J Clean Prod, 2019, 219: 236-243. http://www.sciencedirect.com/science/article/pii/S0959652619304858
    [10] LINAK WP, WENDT J O. Toxic metal emissions from incineration: Mechanisms and control[J]. Prog Energy Combust Sci, 1993, 19: 145-185. http://www.sciencedirect.com/science/article/pii/0360128593900146
    [11] WENDT J O, LEE S J. High-temperature sorbents for Hg, Cd, Pb, and other trace metals: Mechanisms and applications[J]. Fuel 2010, 89: 894-903. http://www.ingentaconnect.com/content/el/00162361/2010/00000089/00000004/art00016
    [12] WANG J, ZHANG Y, WANG T, XU H, PAN W. Effect of modified fly ash injection on As, Se, and Pb emissions in coal-fired power plant[J]. Chem Eng J, 2020, 380: 122561. http://www.sciencedirect.com/science/article/pii/S1385894719319643
    [13] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.环境空气质量标准[Z]. GB 3095-2012, 北京: 中国环境科学出版社, 2016.
    [14] ZHANG K, ZHANG D, ZHANG K, CAO Y. Capture of gas-phase arsenic by ferrospheres separated from fly ashes[J]. Energy Fuels, 2016, 30(10): 8746-8752. doi: 10.1021/acs.energyfuels.6b01637
    [15] MA H, AGNIHOTRIR, CHAUK S, GHOSHDASTIDAR A, FAN L. Mechanism of arsenic sorption by hydrated lime[J]. Environ Sci Technol, 1997, 31(11): 3226-3231. doi: 10.1021/es9702125
    [16] 张月, 李文瀚, 王春波, 刘慧敏, 张永生, 潘伟平.超声波辅助浸渍法制备Fe2O3/γ-Al2O3吸附剂脱除气相As2O3的实验研究[J].燃料化学学报, 2015, 43(9): 1134-1141. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18700.shtml

    ZHANG Yue, LI Wen-han, WANG Chun-bo, LIU Hui-min, ZHANG Yong-sheng, PAN Wei-ping. Experimental study on As2O3 capture from gas phase using ultrasound-assisted prepared Fe2O3/ Al2O3 sorbent[J]. J Fuel Chem Technol, 2015, 43(9): 1134-1141. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18700.shtml
    [17] ZHANG Y, LIU J. Density functional theory study of arsenic adsorption on the Fe2O3 (001) surface[J]. Energy Fuels, 2019, 33(2): 1414-1421. http://www.researchgate.net/publication/330269524_Density_Functional_Theory_Study_of_Arsenic_Adsorption_on_the_Fe2O3001_Surface
    [18] GAO Z, LONG H, DAI B, GAO X. Investigation of reducing particulate matter (PM) and heavy metals pollutions by adding a novel additive from metallurgical dust (MD) during coal combustion[J]. J Hazard Mater, 2019, 373: 335-346. http://www.ncbi.nlm.nih.gov/pubmed/30928676
    [19] YAO H, NARUSE I. Control of trace metal emissions by sorbents during sewage sludge combustion[J]. Proc Combust Inst, 2005, 30: 3009-3016. http://www.sciencedirect.com/science/article/pii/S0082078404000505
    [20] YAO H, NARUSE I. Using sorbents to control heavy metals and particulate matter emission during solid fuel combustion[J]. Particuology 2009, 7: 477-482. http://www.sciencedirect.com/science/article/pii/S1674200109000790
    [21] KUO J, LIN C, WEY M. Effect of particle agglomeration on heavy metals adsorption by Al-and Ca-based sorbents during fluidized bed incineration[J]. Fuel Process Technol, 2011, 92: 2089-2098. http://www.sciencedirect.com/science/article/pii/S0378382011002347
    [22] GAO Z, LONG H, DAI B, GAO X. Investigation of reducing particulate matter (PM) and heavy metals pollutions by adding a novel additive from metallurgical dust (MD) during coal combustion[J]. J Hazard Mater, 2019, 373: 335-346. http://www.ncbi.nlm.nih.gov/pubmed/30928676
    [23] WANG J, ZHANG Y, WANG T, XU H, PAN W. Effect of modified fly ash injection on As, Se, and Pb emissions in coal-fired power plant[J]. Chem Eng J, 2020, 380: 122561. http://www.sciencedirect.com/science/article/pii/S1385894719319643
    [24] 何梓谦, 余圣辉, 张成, 许豪, 方庆艳, 陈刚.气氛对氧化物吸附气相砷的影响及机理分析[J].洁净煤技术, 2020, 26(4): 190-195.

    HE Zi-qian, YU Sheng-hui, ZHANG Cheng, XU Hao, FANG Qing-yan, CHEN Gang. Effects of atmosphere on gas-phase arsenic adsorption by oxides and mechanism analysis[J]. Clean Coal Technol, 2020, 26(4): 190-195.
    [25] YU S, ZHANG C, MA L, TAN P, FANG Q, CHEN G. Deep insight into the effect of NaCl/HCl/SO2/CO2 in simulated flue gas on gas-phase arsenic adsorption over mineral oxide sorbents[J]. J Hazard Mater, 2021, 403: 123617. http://www.sciencedirect.com/science/article/pii/S0304389420316034
    [26] YUAN C, ZHANG C, YU S, XU H, LI X, FANG Q, CHEN G. Experimental and density functional theory study of the adsorption characteristics of CaO for SeO2 in simulated flue gas and the effect of CO2[J]. Energy Fuels, 2020. https://doi.org/10.1021/acs.energyfuels.0c02044.
    [27] SCHWINDT VC, ARDENGHI JS, BECHTHOLD P, GONZALEZA EA, JASENA PV, JUANA A, BATICB BS, JENKO M. Selenium adsorption at different coverages on Fe (100) and Fe (111): A DFT study[J]. Appl Surf Sci, 2014, 315: 252-260. http://www.sciencedirect.com/science/article/pii/S0169433214016596
    [28] FAN Y, ZHUO Y, LOU Y, ZHU Z, LI L. SeO2 adsorption on CaO surface: DFT study on the adsorption of a single SeO2 molecule[J]. Appl Surf Sci, 2017, 413: 366-371. http://www.sciencedirect.com/science/article/pii/S0169433217308772
    [29] HE F, ZHOU L, ZHANG X, LI W, YANG L, ZHAO H, HE X. Synthesis and anisotropic properties of alumina-silica aerogels constructed by silica sols infiltrated into unidirectional frozen alumina templates[J]. Ceram Int, 2019, 45: 11963-11970. http://www.sciencedirect.com/science/article/pii/s0272884219306285
    [30] 许豪, 张成, 袁昌乐, 余圣辉, 李权, 方庆艳, 陈刚.模拟烟气气氛下矿物元素组分对砷的吸附特性研究[J].燃料化学学报, 2019, 47(7): 876-883. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract29424.shtml

    XU Hao, ZHANG Cheng, YUAN Chang-le, YU Sheng-hui, LI Quan, FANG Qing-yan, CHEN Gang. Study on arsenic adsorption characteristics by mineral elements in simulated flue gas atmosphere[J]. J Fuel Chem Technol, 2019, 47(7): 876-883. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract29424.shtml
    [31] CHEN D, HU H, XU Z, LIU H, CAO J, SHEN J, YAO H. Findings of proper temperatures for arsenic capture by CaO in the simulated flue gas with and without SO2[J]. Chem Eng J, 2015, 267: 201-206. http://www.sciencedirect.com/science/article/pii/S1385894715000649
    [32] LIU T, XUE L, GUO X, HUANG Y, ZHENG C. DFT and experimental study on the mechanism of elemental mercury capture in the presence of HCl on α-Fe2O3(001)[J]. Environ Sci Technol, 2016, 50(9): 4863-4868. doi: 10.1021/acs.est.5b06340
    [33] WANG H, CHAI Z, WANG D. Adsorption of uranyl on hydroxylated α-SiO2(001): A first-principle study[J]. Dalton Trans, 2014, 44: 1646-1655. http://www.ncbi.nlm.nih.gov/pubmed/25437449
    [34] SU Q, JU X, FENG Q, SI Y. Periodic DFT study of adsorption of nitroamine molecule on α-Al2O3(0 0 1) surface[J]. Appl Surf Sci, 2012, 258(19): 7334-7342. http://www.sciencedirect.com/science/article/pii/S0169433212006472
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  63
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-01
  • 修回日期:  2020-09-09
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-11-10

目录

    /

    返回文章
    返回