留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硼掺杂还原态氧化石墨烯催化剂的制备及其蒽催化加氢性能的研究

李枫 刘仁厚 赵宁 肖福魁

李枫, 刘仁厚, 赵宁, 肖福魁. 硼掺杂还原态氧化石墨烯催化剂的制备及其蒽催化加氢性能的研究[J]. 燃料化学学报(中英文), 2020, 48(8): 1004-1014.
引用本文: 李枫, 刘仁厚, 赵宁, 肖福魁. 硼掺杂还原态氧化石墨烯催化剂的制备及其蒽催化加氢性能的研究[J]. 燃料化学学报(中英文), 2020, 48(8): 1004-1014.
LI Feng, LIU Ren-hou, ZHAO Ning, XIAO Fu-kui. Boron-functionalized reduced graphene oxide as carbocatalysts with enhanced activity for hydrogenation of anthracene[J]. Journal of Fuel Chemistry and Technology, 2020, 48(8): 1004-1014.
Citation: LI Feng, LIU Ren-hou, ZHAO Ning, XIAO Fu-kui. Boron-functionalized reduced graphene oxide as carbocatalysts with enhanced activity for hydrogenation of anthracene[J]. Journal of Fuel Chemistry and Technology, 2020, 48(8): 1004-1014.

硼掺杂还原态氧化石墨烯催化剂的制备及其蒽催化加氢性能的研究

基金项目: 

国家青年科学基金 21802158

国家自然科学基金 21776294

详细信息
  • #:共同第一作者
  • 中图分类号: O643

Boron-functionalized reduced graphene oxide as carbocatalysts with enhanced activity for hydrogenation of anthracene

Funds: 

the National Youth Science Foundation of China 21802158

National Natural Science Foundation of China 21776294

More Information
  • 摘要: 制备了一系列硼掺杂的还原氧化态石墨烯催化剂并应用于蒽加氢反应。结果表明,随着催化剂处理温度的升高,催化剂中有序碳结构会发生变化,硼会取代材料骨架中的碳,进而影响蒽和氢气的吸附活化。经硼改性后,催化剂对蒽加氢反应表现出了很高的加氢活性,蒽的最高转化率可达97%,深度加氢产物八氢蒽的最高选择性可达19%。
    1)  #:共同第一作者
  • 图  1  催化剂的SEM照片和EDX图片:BrGO650 (a)、BrGO800 (b)、BrGO900 (c)、BrGO1000 (d)和BrGO1100 (e)

    Figure  1  SEM images and EDX pictures of BrGO650 (a), BrGO800 (b), BrGO900 (c), BrGO1000 (d) and BrGO1100 (e)

    图  2  催化剂BrGO650 (a)、BrGO800 (b)、BrGO900 (c)、BrGO1000 (d)和BrGO1100 (e)的TEM、SAED照片,BrGO650 (a1)、BrGO800 (b1)、BrGO900 (c1)、BrGO1000 (d1)和BrGO1100 (e1)的HRTEM照片

    Figure  2  TEM and the SAED images of BrGO650 (a), BrGO800 (b), BrGO900 (c), BrGO1000 (d), BrGO1100 (e) and HRTEM images of BrGO650 (a1), BrGO800 (b1), BrGO900 (c1), BrGO1000 (d1), BrGO1100 (e1)

    图  3  催化剂BrGO650、BrGO800、BrGO900、BrGO1000和BrGO1100的XRD谱图

    Figure  3  XRD patterns of BrGO650, BrGO800, BrGO900, BrGO1000 and BrGO1100

    图  4  催化剂BrGO650、BrGO800、BrGO900、BrGO1000和BrGO1100的拉曼光谱谱图

    Figure  4  Raman spectra of BrGO650, BrGO800, BrGO900, BrGO1000 and BrGO1100

    图  5  催化剂BrGO650、BrGO800、BrGO900、BrGO1000和BrGO1100的XPS谱图(a)和C 1s高分辨图(b)

    Figure  5  XPS spectra (a) and high resolution C 1s XPS spectra (b) of BrGO650, BrGO800, BrGO900, BrGO1000, and BrGO1100

    图  6  催化剂BrGO650 (a)、BrGO800 (b)、BrGO900 (c)、BrGO1000 (d)和BrGO1100 (e)的C 1s分峰拟合谱图

    Figure  6  C 1s spectra of BrGO650 (a), BrGO800 (b), BrGO900 (c), BrGO1000 (d) and BrGO1100 (e)

    图  7  催化剂BrGO650 (a)、BrGO800 (b)、BrGO900 (c)、BrGO1000 (d)和BrGO1100 (e)的B 1s分峰拟合谱图

    Figure  7  B 1s spectra of BrGO650 (a), BrGO800 (b), BrGO900 (c), BrGO1000 (d) and BrGO1100 (e)

    图  8  催化剂BrGO650、BrGO800、BrGO900、BrGO1000和BrGO1100的FT-IR谱图

    Figure  8  FT-IR spectra of BrGO650, BrGO800, BrGO900, BrGO1000, and BrGO1100

    图  9  催化剂BrGO650、BrGO800、BrGO900、BrGO1000和BrGO1100的蒽转化率和产物选择性

    Figure  9  Anthracene conversion and products distribution over BrGO650, BrGO800, BrGO900, BrGO1000 and BrGO1100

    reaction conditions: t=350 ℃, pH2=4 MPa, H2/feed=600(cm3/cm3), LHSV=2.5 h-1

    图  10  催化剂BrGO650、BrGO800、BrGO900、BrGO1000、BrGO1100、rGO450、rGO650、rGO900、rGO1100的氢转移能力

    Figure  10  Hydrogen transfer capability over BrGO650 (■), BrGO800 (●), BrGO900 (▲), BrGO1000 (▼), BrGO1100 (◆), rGO450 ($ \triangleright $), rGO650 (□), rGO900 (△) and rGO1100 (◇)

    表  1  XPS中催化剂表面C、B、O的相对含量和拉曼中催化剂的D/G面积比

    Table  1  Surface species concentration of C, B, O from XPS and the area ratio (D/G) from Raman

    Sample Content wat/% D/G
    C B O
    BrGO650 71.70 9.27 19.03 2.21
    BrGO800 82.51 5.31 12.18 2.29
    BrGO900 81.74 6.41 11.85 2.36
    BrGO1000 82.27 6.92 10.81 2.42
    BrGO1100 82.58 7.11 10.31 2.27
    下载: 导出CSV

    表  2  催化剂BrGO650、BrGO800、BrGO900、BrGO1000和BrGO1100的表面C 1s和B 1s物种的种类及相对含量

    Table  2  Relative surface concentration of carbon species and boron species obtained by fitting the C 1s and B 1s spectra for all samples

    Samples Fitting of C 1s peak
    (relative atomic percentage /%)
    Fitting of B 1s peak
    (relative atomic percentage /%)
    C-C C-B C-O-C C=O BC3 BC2O BCO2 B2O3
    BrGO650 33.31 34.15 18.71 13.83 - - - 100
    BrGO800 33.79 41.91 12.59 11.70 - - 15.77 84.23
    BrGO900 32.33 43.35 10.01 14.31 - 3.47 17.73 78.80
    BrGO1000 36.51 41.14 7.87 14.48 0.26 3.62 23.68 72.44
    BrGO1100 38.31 39.94 7.13 14.61 3.41 3.70 24.08 68.81
    下载: 导出CSV
  • [1] SU C L, LOH K P. Carbocatalysts:Graphene oxide and its derivatives[J]. Acc Chem Res, 2013, 46(10):2275-2285. doi: 10.1021/ar300118v
    [2] ZHANG Y, ZHANG L Y, ZHOU C W. Review of chemical vapor deposition of graphene and related applications[J]. Acc Chem Res, 2013, 46(10):2329-2339. doi: 10.1021/ar300203n
    [3] NAVALON S, DHAKSHINAMOORTHY A, ALVARO M, GARCIA H. Carbocatalysis by graphene-based materials[J]. Chem Rev, 2014, 114(12):6179-6212. doi: 10.1021/cr4007347
    [4] FURIMSKY E. Carbons and carbon supported catalysts in hydroprocessing[J]. Platinum Metals Rev, 2009, 53(3):135-137. doi: 10.1595/147106709X465479
    [5] ZHANG Z G, OKADA K, YAMAMOTO M, YOSHIDA T. Hydrogenation of anthracene over active carbon-supported nickel catalyst[J]. Catal Today, 1998, 45(1):361-366. http://www.sciencedirect.com/science/article/pii/S0920586198002648
    [6] SUN L B, WEI X Y, LIU X Q, ZONG Z M, LI W, KOU J H. Selective hydrogen transfer to anthracene and its derivatives over an activated carbon[J]. Energy Fuels, 2009, 23(10):4877-4882. doi: 10.1021/ef900398g
    [7] SUN L B, ZONG Z M, KOU J H, ZHANG L F, NI Z H, YU G Y, CHEN H, WEI X Y. Activated carbon-catalyzed hydrogenation of polycyclic arenes[J]. Energy Fuels, 2004, 18(5):1500-1504. doi: 10.1021/ef049946a
    [8] HUANG X, QI X Y, BOEY F, ZHANG H. Graphene-based composites[J]. Chem Soc Rev, 2012, 41(2):666-686. doi: 10.1039/C1CS15078B
    [9] TRANDAFIR M M, FLOREA M, NEAŢU F, PRIMO A, PARVULESCU V I, GARCÍA H. Graphene from alginate pyrolysis as a metal-free catalyst for hydrogenation of nitro compounds[J]. ChemSusChem, 2016, 9(13):1565-1569. doi: 10.1002/cssc.201600197
    [10] PRIMO A, NEATU F, FLOREA M, PARVULESCU V, GARCIA H. Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation[J]. Nat Commun, 2014, 5, 5291. doi: 10.1038/ncomms6291
    [11] YANG J H, SUN G, GAO Y J, ZHAO H B, TANG P, TAN J, LU A H, MA D. Direct catalytic oxidation of benzene to phenol over metal-free graphene-based catalyst[J]. Energy Environ Sci, 2013, 6(3):793-798. doi: 10.1039/c3ee23623d
    [12] KONG X, SUN Z, CHEN M, CHEN C, CHEN Q. Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene[J]. Energy Environ Sci, 2013, 6(11):3260-3266. doi: 10.1039/c3ee40918j
    [13] 刘仁厚.石墨烯基催化剂的制备及其蒽催化加氢性能研究[D].太原: 中国科学院山西煤炭化学研究所, 2017.

    LIU Ren-hou. Study of Graphene-based carbocatalysts for hydrogenation of anthracene[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2017.
    [14] QU L T, LIU Y, BAEK J B, DAI L M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J]. ACS Nano, 2010, 4(3):1321-1326. doi: 10.1021/nn901850u
    [15] WANG H B, MAIYALAGAN T, WANG X. Review on recent progress in nitrogen-doped graphene:Synthesis, characterization, and its potential applications[J]. ACS Catal, 2012, 2(5):781-794. doi: 10.1021/cs200652y
    [16] WEI Z Z, WANG J, MAO S J, SU D F, JIN H Y, WANG Y H, XU F, LI H R, WANG Y. In situ-generated Co0-Co3O4/N-doped carbon nanotubes hybrids as efficient and chemoselective catalysts for hydrogenation of nitroarenes[J]. ACS Catal, 2015, 5(8):4783-4789. doi: 10.1021/acscatal.5b00737
    [17] WU Z S, WINTER A, CHEN L, SUN Y, TURCHANIN A, FENG X L, MVLLEN K. Three-dimensional nitrogen and boron Co-doped graphene for high-performance all-solid-state supercapacitors[J]. Adv Mater, 2012, 24(37):5130-5135. doi: 10.1002/adma.201201948
    [18] ZHANG C H, FU L, LIU N, LIU M H, WANG Y Y, LIU Z F. Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources[J]. Adv Mater, 2011, 23(8):1020-1024. doi: 10.1002/adma.201004110
    [19] LIN Z Y, WALLER G, LIU Y, LIU M, WONG C P. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction[J]. Adv Energy Mater, 2012, 2(7):884-888. doi: 10.1002/aenm.201200038
    [20] YAZDI A Z, CHIZARI K, JALILOV A S, TOUR J, SUNDARARAJ U. Helical and dendritic unzipping of carbon nanotubes:a route to nitrogen-doped graphene nanoribbons[J]. ACS Nano, 2015, 9(6):5833-5845. doi: 10.1021/acsnano.5b02197
    [21] WANG Y, SHAO Y Y, MATSON D W, LI J H, LIN X H. Nitrogen-doped graphene and its application in electrochemical biosensing[J]. ACS Nano, 2010, 4(4):1790-1798. doi: 10.1021/nn100315s
    [22] SHENG Z H, SHAO L, CHEN J J, BAO W J, WANG F B, XIA X H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis[J]. ACS Nano, 2011, 5(6):4350-4358. doi: 10.1021/nn103584t
    [23] SUBRAHMANYAM K S, PANCHAKARLA L S, GOVINDARAJ A, RAO C N R. Simple method of preparing graphene flakes by an arc-discharge method[J]. J Phys Chem C, 2009, 113(11):4257-4259. doi: 10.1021/jp900791y
    [24] ENOUZ S, STÉPHAN O, COCHON J L, COLLIEX C, LOISEAU A. C-BN patterned single-walled nanotubes synthesized by laser vaporization[J]. Nano Lett, 2007, 7(7):1856-1862. doi: 10.1021/nl070327z
    [25] SUENAGA K, COLLIEX C, DEMONCY N, LOISEAU A, PASCARD H, WILLAIME F. Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon[J]. Science, 1997, 278(5338):653-655. doi: 10.1126/science.278.5338.653
    [26] IAMPRASERTKUN P, KRITTAYAVATHANANON A, SAWANGPHRUK M. N-doped reduced graphene oxide aerogel coated on carboxyl-modified carbon fiber paper for high-performance ionic-liquid supercapacitors[J]. Carbon, 2016, 102:455-461. doi: 10.1016/j.carbon.2015.12.092
    [27] ZHAO Y, YANG L J, CHEN S, WANG X Z, MA Y W, WU Q, JIANG Y F, QIAN W J, HU Z. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes?[J]. J Am Chem Soc, 2013, 135(4):1201-1204. doi: 10.1021/ja310566z
    [28] THIRUMAL V, PANDURANGAN A, JAYAVEL R, KRISHNAMOORTHI S R, ILANGOVANET R. Synthesis of nitrogen doped coiled double walled carbon nanotubes by chemical vapor deposition method for supercapacitor applications[J]. Current Appl Phys, 2016, 16(8):816-825. doi: 10.1016/j.cap.2016.04.018
    [29] I X H, ANTONIETTI M. Polycondensation of boron- and nitrogen-Codoped holey graphene monoliths from molecules:Carbocatalysts for selective oxidation[J]. Angew Chem Int Ed, 2013, 52(17):4572-4576. doi: 10.1002/anie.201209320
    [30] WANG H, ZHENG X L, CHEN H N, YAN K Y, ZHU Z L, YANG S H. The nanoscale carbon p-n junction between carbon nanotubes and N, B-codoped holey graphene enhances the catalytic activity towards selective oxidation[J]. Chem Commu, 2014, 50(56):7517-7520. doi: 10.1039/C4CC01707B
    [31] TANG Y B, YIN L C, YANG Y, BO X H, CAO Y L, WANG H E, ZHANG W J, BELLO I, LEE S T, CHENG H M, LEE C S. Tunable band gaps and p-type transport properties of boron-doped graphenes by controllable ion doping using reactive microwave plasma[J]. ACS Nano, 2012, 6(3):1970-1978. doi: 10.1021/nn3005262
    [32] PANCHAKARLA L S, SUBRAHMANYAM K S, SAHA S K, GOVINDARAJ A, KRISHNAMURTHY H R, WAGHMARE U V, RAO C N R. Synthesis, structure, and properties of boron- and nitrogen-doped graphene[J]. Adv Mater, 2009, 21:4726-4730. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000000058683
    [33] XU Z, LU W G, WANG W L, GU C Z, LIU K H, BAI X D, WANG E G, DAI H J. Converting metallic single-walled carbon nanotubes into semiconductors by boron/nitrogen Co-doping[J]. Adv Mater, 2008, 20(19):3615-3619. doi: 10.1002/adma.200800830
    [34] PULLAMSETTY A, SUNDARA R. Investigation of catalytic activity towards oxygen reduction reaction of Pt dispersed on boron doped graphene in acid medium[J]. J Colloid Interf Sci, 2016, 479:260-270. doi: 10.1016/j.jcis.2016.06.069
    [35] SHENG Z H, GAO H L, BAO W J, WANG F B, XIA X H. Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells[J]. J Mater Chem, 2012, 22(2):390-395. doi: 10.1039/C1JM14694G
    [36] THIRUMAL V, PANDURANGAN A, JAYAVEL R, ILANGOVAN R. Synthesis and characterization of boron doped graphene nanosheets for supercapacitor applications[J]. Synthetic Met, 2016, 220:524-532. doi: 10.1016/j.synthmet.2016.07.011
    [37] YANG X X, LIU L, WU M H, WANG W L, BAI X D, WANG E G. Wet-chemistry-assisted nanotube-substitution reaction for high-efficiency and bulk-quantity synthesis of boron- and nitrogen-codoped single-walled carbon nanotubes[J]. J Am Chem Soc, 2011, 133(34):13216-13219. doi: 10.1021/ja202234z
    [38] BANHART F, KOTAKOSKI J, KRASHENINNIKOV A V. Structural defects in graphene[J]. ACS Nano, 2010, 5(1):26-41. http://cn.bing.com/academic/profile?id=98d5e20d07ed8d5afd10a191704f05c3&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  108
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-28
  • 修回日期:  2020-07-29
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-08-10

目录

    /

    返回文章
    返回