留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Microwave-assisted catalytic oxidative desulfurization of gasoil fuel using synthesized CuO-ZnO nanocomposites

Fadhil Mustafa H. Ammar Saad H. Abdul Jabbar Marwa F.

Fadhil Mustafa H., Ammar Saad H., Abdul Jabbar Marwa F.. Microwave-assisted catalytic oxidative desulfurization of gasoil fuel using synthesized CuO-ZnO nanocomposites[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1075-1082.
Citation: Fadhil Mustafa H., Ammar Saad H., Abdul Jabbar Marwa F.. Microwave-assisted catalytic oxidative desulfurization of gasoil fuel using synthesized CuO-ZnO nanocomposites[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1075-1082.

详细信息
  • 中图分类号: TE64

Microwave-assisted catalytic oxidative desulfurization of gasoil fuel using synthesized CuO-ZnO nanocomposites

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1  Microwave reactor arrangement used for catalytic oxidative desulfurization

    Figure  2  X-ray powder diffraction patterns of catalysts

    a: ZnO; b: CuO; c: CuO-ZnO (2:1); d: CuO-ZnO (1:2); e: CuO-ZnO (1:1)

    Figure  3  FE-SEM images of catalysts

    (a): ZnO; (b): CuO; (c): CuO-ZnO (2:1); (d): CuO-ZnO (1:2)

    Figure  4  Microwave-assisted CODS of gasoil fraction using prepared catalysts

    (CuO-ZnO with different weight ratio, ZnO and CuO) (experimental conditions: catalyst dosage=8g/L (0.4 g), H2O2:gasoil volume ratio=0.3, gasoil volume=50mL, microwave power level=540W and irradiation time=15min)

    Figure  5  Effect of microwave power and irradiation time on sulfur conversion

    (experimental conditions: 50mL of gasoil volume, 8g/L of catalyst dosage and H2O2:gasoil volume ratio of 0.3)

    Figure  6  Effect of catalyst dosage on the sulfur conversion

    (experimental conditions: gasoil volume of 50mL, microwave power of 540W and H2O2:gasoil volume ratio of 0.3)

    Figure  7  Effect of H2O2:gasoil volume ratio on the sulfur conversion of gasoil

    (experimental conditions: gasoil volume of 50mL, microwave power of 450W, irradiation time of 15min and catalyst dosage of 8g/L)

    Figure  8  CuO-ZnO nanocomposite recyclability results

    (experimental conditions: gasoil volume of 50mL, microwave power of 540W, irradiation time of 15min, catalyst dosage of 8g/L and H2O2:gasoil volume ratio of 0.3)

    Table  1  General characteristics of light gasoil fraction

    Property Value
    Sulfur w/% 1.01
    SG @ 15.6℃ 0.826
    Flash point t/℃ 68
    Distillation t/℃
    IBP 184
    5% 216
    10% 230
    20% 250
    30% 262
    40% 272
    50% 280
    60% 286
    70% 294
    80% 302
    90% 310
    95% 316
    FBP 330
    下载: 导出CSV

    Table  2  Surface area values for prepared catalyst samples

    Catalyst sample BET specific surface area A/(cm2·g-1) vP /(cm3·g-1) dp /nm
    ZnO 16.93 0.0712 46.52
    CuO 13.48 0.0481 67.1
    CuO-ZnO (1:2) 26.52 0.0722 76.77
    CuO-ZnO (1:1) 23.35 0.0653 75.2
    CuO-ZnO (2:1) 19.44 0.0369 74.56
    下载: 导出CSV
  • [1] ZHU W, LI H, JIANG X, YAN Y, LU J, HE L, XIA J. Commercially available molybdic compound-catalyzed ultra-deep desulfurization of fuels in ionic liquids[J]. Green Chem, 2008, 10(6):641-646. doi: 10.1039/b801185k
    [2] CHEN X, SONG D, ASUMANA C, YU G. Deep oxidative desulfurization of diesel fuels by Lewis acidic ionic liquids based on 1-n-butyl-3-methylimidazolium metal chloride[J]. J Mol Catal A:Chem, 2012, 359:8-13. doi: 10.1016/j.molcata.2012.03.014
    [3] SEEBERGER A, JESS A. Desulfurization of diesel oil by selective oxidation and extraction of sulfur compounds by ionic liquids-a contribution to a competitive process design[J]. Green Chem, 2010, 12:602-608. doi: 10.1039/b918724c
    [4] EβER J, WASSERSCHEID P, JESS A. Deep desulfurization of oil by extraction with ionic liquids[J]. Green Chem, 2004, 6:316-322. doi: 10.1039/B407028C
    [5] AGARWAL P, SHARMA D K. Comparative studies on the bio-desulfurization of crude oil with other desulfurization techniques and deep desulfurization through integrated processes[J]. Energy Fuels, 2010, 24(1):518-524. doi: 10.1021/ef900876j
    [6] LIU S, WANG B, CUI B, SUN L. Deep desulfurization of diesel oil oxidized by Fe (Ⅵ) systems[J]. Fuel, 2008, 87(3):422-428.
    [7] ZHANG J, WANG A, LI X, MA X. Oxidative desulfurization of dibenzothiophene and diesel over[Bmim]3PMo12O40[J]. J Catal, 2011, 279(2):269-275. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=85306610c42e2e43818aae01b2f5cdd9
    [8] SUN B, YU X, WANG L, FENG L J, LI C H. Enhanced visible light photocatalytic oxidative desulfurization by BiOBr-graphene composite[J]. J Fuel Chem Technol, 2016, 44(9):1074-1081. doi: 10.1016/S1872-5813(16)30049-4
    [9] ZENG A X, XIAO X, LI Y, CHEN J, WANG H. Deep desulfurization of liquid fuels with molecular oxygen through graphene photocatalytic oxidation[J]. Appl Catal B:Environ, 2017, 209:98-109. doi: 10.1016/j.apcatb.2017.02.077
    [10] CHICA A, CORMA A, DÓMINE M E. Catalytic oxidative desulfurization (ODS) of diesel fuel on a continuous fixed-bed reactor[J]. J Catal, 2006, 242(2):299-308. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8ef00c0f3475d50127d1773297df801f
    [11] GAO Y, GAO R, ZHANG G, ZHENG Y, ZHAO J. Oxidative desulfurization of model fuel in the presence of molecular oxygen over polyoxometalate based catalysts supported on carbon nanotubes[J]. Fuel, 2018, 224:261-270. doi: 10.1016/j.fuel.2018.03.034
    [12] SARAVANAN R, KARTHIKEYAN S, GUPTA V K, SEKARAN G, NARAYANAN V, STEPHEN A. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination[J]. Mater Sci Eng C, 2013, 33(1):91-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5d117220749789d199ef1551ca18d974
    [13] ZHU L, LI H, LIU Z, XIA P, XIE Y, XIONG D. Synthesis of 0D/3D CuO/ZnO heterojunction with enhanced photocatalytic activity synthesis of 0D/3D CuO/ZnO heterojunction with enhanced photocatalytic activity[J]. J Phys Chem, 2018, 122(17):9513-9539. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a230cd9ef4187cc6e0d3a3d4625b9337
    [14] CHEN C, LIU P, LU C. Synthesis and characterization of nano-sized ZnO powders by direct precipitation method[J]. Chem Eng J, 2008, 144(3):509-513. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6b77297cf5567985b00f05b26746d9e7
    [15] PHIWDANG K, SUPHANKIJ S, MEKPRASART W. Synthesis of CuO nanoparticles by precipitation method using different precursors[J]. Energy Procedia, 2013, 34:740-745. doi: 10.1016/j.egypro.2013.06.808
    [16] LI B, WANG Y. Superlattices and microstructures facile synthesis and photocatalytic activity of ZnO-CuO nanocomposite[J]. Superlattices Microstruct, 2010, 47(5):615-623. doi: 10.1016/j.spmi.2010.02.005
    [17] KHAN M F, ANSARI A H, HAMMEEDULLAH M, AHMAD E, HUSAIN F M, ZIA Q, BAIG U, ZAHEER M R, ALAM M M, KHAN A H, ALOTHMAN Z A, AHMAD I, ASHRAF G N, ALIEV G. Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities:Potential role as nano-antibiotics[J]. Sci Rep, 2016, 27689.
    [18] KUMARI R, SAHAI A, GOSWAMI N. Effect of nitrogen doping on structural and optical properties of ZnO nanoparticles[J]. Prog Nat Sci Mater Int, 2015, 25(4):300-309. doi: 10.1016/j.pnsc.2015.08.003
    [19] MOEZZI A, MCDONAGH A M, CORTIE M B. Zinc oxide particles:Synthesis, properties and applications[J]. Chem Eng J, 2012, 185/186:1-22. http://d.old.wanfangdata.com.cn/Periodical/clkxjsxb-e200804003
    [20] SATHISHKUMAR P, SWEENA R, WU J J, ANANDAN S. Synthesis of CuO-ZnO nanophotocatalyst for visible light assisted degradation of a textile dye in aqueous solution[J]. Chem Eng J, 2011, 171(1):136-140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3a49ee19357c171968d5575f4a2675ee
    [21] MUTYALA S, FAIRBRIDGE C, PARÉ J R J, BÉLANGER J M R, NG S, HAWKINS R. Microwave applications to oil sands and petroleum:A review[J]. Fuel Process Technol, 2010, 91(2):127-135. doi: 10.1016/j.fuproc.2009.09.009
    [22] MIADONYE A, SNOW S, IRWIN D J G, KHAN M R, BRITTEN A J. Desulfurization of heavy crude oil by microwave irradiation[J]. 2009, 63: 455-465.
    [23] MESDOUR S, LEKBIR C, DOUMANDJI L, HAMADA B. Microwave-assisted extractive catalytic-oxidative desulfurization of diesel fuel via a VO (acac)2/ionic liquid system with H2O2 and H2SO4 as oxidizing agents[J]. J Sulfur Chem, 2017, 38(4):421-439. doi: 10.1080/17415993.2017.1304550
    [24] SHANG H, ZHANG H, DU W, LIU Z. Development of microwave assisted oxidative desulfurization of petroleum oils:A review[J]. J Ind Eng Chem, 2013, 19(5):1426-1432. doi: 10.1016/j.jiec.2013.01.015
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  25
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-21
  • 修回日期:  2019-07-20
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-09-10

目录

    /

    返回文章
    返回