留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO2在三聚氰胺酚醛纤维上的吸附分离

周智慧 金灿 张豪益 梁晓蕾 张富民 肖强

周智慧, 金灿, 张豪益, 梁晓蕾, 张富民, 肖强. CO2在三聚氰胺酚醛纤维上的吸附分离[J]. 燃料化学学报(中英文), 2019, 47(2): 242-248.
引用本文: 周智慧, 金灿, 张豪益, 梁晓蕾, 张富民, 肖强. CO2在三聚氰胺酚醛纤维上的吸附分离[J]. 燃料化学学报(中英文), 2019, 47(2): 242-248.
ZHOU Zhi-hui, JIN Can, ZHANG Hao-yi, LIANG Xiao-lei, ZHANG Fu-min, XIAO Qiang. CO2 adsorption and separation on phloroglucinol-melamine -formaldehyde polymeric nanofibers[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 242-248.
Citation: ZHOU Zhi-hui, JIN Can, ZHANG Hao-yi, LIANG Xiao-lei, ZHANG Fu-min, XIAO Qiang. CO2 adsorption and separation on phloroglucinol-melamine -formaldehyde polymeric nanofibers[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 242-248.

CO2在三聚氰胺酚醛纤维上的吸附分离

基金项目: 

国家自然科学基金 21471131

浙江省大学生科技创新活动计划(新苗人才计划) 2017R404017

详细信息
  • 中图分类号: O613

CO2 adsorption and separation on phloroglucinol-melamine -formaldehyde polymeric nanofibers

Funds: 

the National Natural Science Foundation of China 21471131

College Students Technology Innovation Plan of Zhejiang Province(XinMiao Talent Plan) 2017R404017

More Information
  • 摘要: 以三聚氰胺、间苯三酚和甲醛为原料,通过水热缩聚反应合成了三聚氰胺酚醛纤维(PMF),考察了温度对PMF合成的影响。以扫描电子显微镜(SEM)、透射电子显微镜(TEM)、N2吸脱附和傅里叶变换红外(FT-IR)光谱等表征了PMF的形貌和结构,并采用体积法测定不同温度下CO2和N2在PMF上的单组分吸附平衡等温线。结果表明,在393 K下合成的PMF具有较大的比表面积(64 m2/g)和较高的CO2吸附量(1.83 mmol/g,298 K、118 kPa)。穿透柱实验表明,在298 K、200-600 kPa,CO2-N2混合气在PMF上均可实现有效分离。将PMF在873 K下,N2、H2及水蒸气等多种气氛中进行后处理,其比表面积和微孔孔容均显著增加,其中,在15% H2O气氛中处理后,样品CO2吸附量提高至2.83 mmol/g(298 K、118 kPa)。
  • 图  1  PMF样品的SEM照片

    Figure  1  SEM images of the PMF samples

    (a): T1; (b): T2; (c): T3; (d): T4

    图  2  PMF样品的TEM照片

    Figure  2  TEM images of the PMF samples

    (a): T1; (b): T2; (c): T3; (d): T4

    图  3  PMF样品的红外光谱谱图

    Figure  3  FT-IR spectra of the PMF samples

    a: T1; b: T2; c: T3; d: T4

    图  4  77 K下PMF的N2吸脱附曲线

    Figure  4  N2 adsorption-desorption isotherms of the PMF samples at 77 K T1-T4 curves were shifted up by 20, 40, 60 and 80 cm3/g, respectively

    图  5  298 K下CO2在PMF上的吸脱附等温线

    Figure  5  Adsorption-desorption isotherms of CO2 on the PMF samples at 298 K

    图  6  298 K,不同压力下CO2-N2在T3上的穿透曲线和解吸曲线

    Figure  6  Breakthrough curves of CO2-N2 on T3 at different pressures and desorption curves in He at 298 K

    图  7  不同气氛中热处理后PMF样品的SEM照片

    Figure  7  SEM images of the PMF samples after thermal treatment at various gas streams

    (a): T3-N2; (b): T3-H2; (c): T3-5%H2O; (d): T3-15%H2O

    图  8  77 K下热处理后样品的N2吸脱附曲线

    Figure  8  N2 adsorption-desorption isotherms of the samples after thermal treatment at 77 K

    图  9  298 K下CO2在热处理后样品上的吸脱附等温线

    Figure  9  Adsorption-desorption isotherms of CO2 on the samples after thermal treatment at 298 K

    表  1  PMF样品的孔结构数据

    Table  1  Porosity data of the PMF samples

    Sample ABET/
    (m2·g-1)
    Smicro/
    (m2·g-1)
    vtotal/
    (cm3·g-1)
    vmicro/
    (cm3·g-1)
    T1 39 2 0.29 0.000
    T2 48 9 0.11 0.004
    T3 64 16 0.19 0.008
    T4 54 10 0.19 0.005
    下载: 导出CSV

    表  2  热处理后PMF的孔结构数据

    Table  2  Porosity data of the PMF samples after thermal treatment

    Sample ABET/
    (m2·g-1)
    Smicro/
    (m2·g-1)
    vtotal/
    (cm3·g-1)
    vmicro/
    (cm3·g-1)
    T3-N2 354 313 0.18 0.13
    T3-H2 490 414 0.25 0.16
    T3-5%H2O 406 375 0.17 0.14
    T3-15%H2O 369 330 0.17 0.14
    下载: 导出CSV

    表  3  XPS谱图N 1s分峰拟合结果

    Table  3  Curve fitting results of N 1s XPS spectra

    N 1s chemical state T3-H2 T3-15%H2O
    EB/eV content w/% EB/eV content w/%
    Nitride 396.8 5.9 397.3 5.4
    Pyridinic 397.6 39.6 398.1 40.1
    Amine 398.1 0.0 398.6 0.0
    Pyrolic 399.5 48.1 400.0 51.8
    Graphic N-O 401.1 6.4 401.6 2.7
    下载: 导出CSV
  • [1] SONG C S. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing[J]. Catal Today, 2006, 115(1):2-32. doi: 10.1016-j.cattod.2006.02.029/
    [2] 黄雪芹, 肖强, 钟依均, 朱伟东.湿磨法制备纳米Li4SiO4材料用于高温捕集CO2[J].燃料化学学报, 2016, 44(9):1119-1124. doi: 10.3969/j.issn.0253-2409.2016.09.013

    HUANG Xue-qin, XIAO Qiang, ZHONG Yi-jun, ZHU Wei-dong. A wet ball-milling method to nanocrystalline Li4SiO4 materials for CO2 capture at high temperatures[J]. J Fuel Chem Technol, 2016, 44(9):1119-1124. doi: 10.3969/j.issn.0253-2409.2016.09.013
    [3] 高峰, 李存梅, 王媛, 孙国华, 李开喜.树脂基球状活性炭的制备及对二氧化碳吸附性能的研究[J].燃料化学学报, 2014, 42(1):116-120. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18343.shtml

    GAO Feng, LI Cun-mei, WANG Yuan, SUN Guo-hua, LI Kai-xi. Preparation of resin-base spherical activated carbon and study on adsorption properties towards CO2 [J]. J Fuel Chem Technol, 2014, 42(1):116-120. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18343.shtml
    [4] MA T Y, LIU L, YUAN Z Y. Direct synthesis of ordered mesoporous carbons[J]. Chem Soc Rev, 2013, 42(9):3977-4003. doi: 10.1039/C2CS35301F
    [5] BAE Y S, SNURR R Q. Development and evaluation of porous materials for carbon dioxide separation and capture[J]. Angew Chem Int Ed, 2011, 50(49):11586-11596. doi: 10.1002/anie.201101891
    [6] HARLICK P J E, TEZEL F H. An experimental adsorbent screening study for CO2 removal from N2[J]. Microporous Mesoporous Mater, 2004, 76(1/3):71-79. doi: 10.1016-j.micromeso.2004.07.035/
    [7] HE Y F, SEATON N A. Heats of adsorption and adsorption heterogeneity for methane, ethane, and carbon dioxide in MCM-41[J]. Langmuir, 2006, 22(3):1150-1155. doi: 10.1021/la052237k
    [8] 陈琳琳, 王霞, 郭庆杰.四乙烯五胺修饰介孔硅胶吸附CO2性能的研究[J].燃料化学学报, 2015, 43(1):108-115. doi: 10.3969/j.issn.0253-2409.2015.01.017

    CHEN Lin-lin, WANG Xia, GUO Qing-jie. Study on CO2 adsorption properties of tetraethylenepentamine modified mesoporous silica gel[J]. J Fuel Chem Technol, 2015, 43(1):108-115. doi: 10.3969/j.issn.0253-2409.2015.01.017
    [9] WANG D, MA X, SENTORUNSHALABY C, SONG C S. Development of carbon-based "molecular basket" sorbent for CO2 capture[J]. Ind Eng Chem Res, 2012, 51(7):3048-3057. doi: 10.1021/ie2022543
    [10] 赵会玲, 胡军, 汪建军, 周丽绘, 刘洪来.介孔材料氨基表面修饰及其对CO2的吸附性能[J].物理化学学报, 2007, 23(6):801-806. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb200706002

    ZHAO Hui-ling, HU Jun, WANG Jian-jun, ZHOU Li-hui, LIU Hong-lai. CO2 capture by the amine-modified mesoporous materials[J]. Acta Phys-Chim Sin, 2007, 23(6):801-806. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb200706002
    [11] 郝仕油, 肖强, 钟依均, 朱伟东, 杨辉.氨基功能化SBA-15的直接合成及其对CO2的吸附性能研究[J].无机化学学报, 2010, 26(6):982-988. http://d.old.wanfangdata.com.cn/Periodical/wjhxxb201006009

    HAO Shi-you, XIAO Qiang, ZHONG Yi-jun, ZHU Wei-dong, YANG Hui. One-pot synthesis of amino-functionalized SBA-15 and their CO2 adsorption properties[J]. Chin J Inorg Chem, 2010, 26(6):982-988. http://d.old.wanfangdata.com.cn/Periodical/wjhxxb201006009
    [12] HERM Z R, SWISHER J A, SMIT B, KRISHNA R, LONG J R. Metal-organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture[J]. J Am Chem Soc, 2011, 133(15):5664-5667. doi: 10.1021/ja111411q
    [13] LI J R, KUPPLER R J, ZHOU H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chem Soc Rev, 2009, 38(5):1477-1504. doi: 10.1039/b802426j
    [14] MILLWARD A R, YAGHI O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J]. J Am Chem Soc, 2005, 127(51):17998-17999. doi: 10.1021/ja0570032
    [15] DING S Y, WANG W. Covalent organic frameworks (COFs):from design to applications[J]. Chem Soc Rev, 2013, 42(2):548-568. doi: 10.1039/C2CS35072F
    [16] XIANG Z H, CAO D P. Porous covalent-organic materials:Synthesis, clean energy application and design[J]. J Mater Chem A, 2013, 1(8):2691-2718. doi: 10.1039/C2TA00063F
    [17] BEN T, PEI C Y, ZHANG D L, XU J, DENG F, JING X F, QIU S L. Gas storage in porous aromatic frameworks(PAFs)[J]. Energy Environ Sci, 2011, 4(10):3991-3999. doi: 10.1039/c1ee01222c
    [18] PEI C Y, BEN T, GUO H, XU J, DENG F, XIANG Z H, CAO D P, QIU S L. Targeted synthesis of electroactive porous organic frameworks containing triphenyl phosphine moieties[J]. Phil Trans R Soc A, 2013, 371(2000):1-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6a0e6a2863e7c3ce08a4113996d84f62
    [19] LIU L, LI P Z, ZHU L L, ZOU R Q, ZHAO Y L. Microporous polymelamine network for highly selective CO2 adsorption[J]. Polymer, 2013, 54(2):596-600. doi: 10.1016/j.polymer.2012.12.015
    [20] XU C, HEDIN N. Synthesis of microporous organic polymers with high CO2-over-N2 selectivity and CO2 adsorption[J]. J Mater Chem A, 2013, 1(10):3406-3414. doi: 10.1039/c3ta01160g
    [21] SCHWAB M G, FASSBENDER B, SPIESS H W, THOMAS A, FENG X, MULLEN K. Catalyst-free preparation of melamine-based microporous polymer networks through schiff base chemistry[J]. J Am Chem Soc, 2009, 131(21):7216-7217. doi: 10.1021/ja902116f
    [22] HU J X, SHANG H, WANG J G, LUO L, XIAO Q, ZHONG Y J, ZHU W D. Highly enhanced selectivity and easy regeneration for the separation of CO2 over N2 on melamine-based microporous organic polymers[J]. Ind Eng Chem Res, 2014, 53(29):11828-11837. doi: 10.1021/ie501736t
    [23] 胡敬秀, 张静, 邹建锋, 肖强, 钟依均, 朱伟东.源自密胺基多孔聚合物的富氮微孔炭及选择性吸附CO2[J].物理化学学报, 2014, 30(6):1169-1174. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201406020

    HU Jing-xiu, ZHANG Jing, ZOU Jian-feng, XIAO Qiang, ZHONG Yi-jun, ZHU Wei-dong. Nitrogen-rich microporous carbon derived from melamine-based porous polymer for selective CO2 adsorption[J]. Acta Phys-Chim Sin, 2014, 30(6):1169-1174. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201406020
    [24] ZHOU H H, XU S, SU H P, WANG M, QIAO W M, LING L C, LONG D H. Facile preparation and ultra-microporous structure of melamine-resorcinol-formaldehyde polymeric microspheres[J]. Chem Commun, 2013, 49(36):3763-3765. doi: 10.1039/c3cc41109e
    [25] WANG M, WANG J, QIAO W M, LING L C, LONG D H. Scalable preparation of nitrogen-enriched carbon microspheres for efficient CO2 capture[J]. RSC Adv, 2014, 4(106):61456-61464. doi: 10.1039/C4RA11647J
    [26] XIAO Q, WEN J J, GUO Y N, HU J X, WANG J G, ZHANG F M, TU G M, ZHONG Y J, ZHU W D. Synthesis, carbonization, and CO2 adsorption properties of phloroglucinol-melamine-formaldehyde polymeric nanofibers[J]. Ind Eng Chem Res, 2016, 55(49):12667-12674. doi: 10.1021/acs.iecr.6b03494
    [27] PERALTA D, CHAPLAIS G, SIMON-MASSERON A, BARTHELET K, CHIZALLET C, QUOINEAUD A A, PIRNGRUBER G D. Comparison of the behavior of metal-organic frameworks and zeolites for hydrocarbon separations[J]. J Am Chem Soc, 2012, 134(19):8115-8126. doi: 10.1021/ja211864w
    [28] STRELKO V V, KUTS V S, THROWER P A. On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions[J]. Carbon, 2000, 38(10):1499-1503. doi: 10.1016/S0008-6223(00)00121-4
    [29] LIU L, DENG Q F, HOU X X, YUAN Z Y. User-friendly synthesis of nitrogen-containing polymer and microporous carbon spheres for efficient CO2 capture[J]. J Mater Chem, 2012, 22(31):15540-15548. doi: 10.1039/c2jm31441j
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  41
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-18
  • 修回日期:  2018-11-28
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-02-10

目录

    /

    返回文章
    返回