留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中温热解焦油重馏分悬浮床加氢裂化的研究

黄澎 李文博 毛学锋 赵鹏

黄澎, 李文博, 毛学锋, 赵鹏. 中温热解焦油重馏分悬浮床加氢裂化的研究[J]. 燃料化学学报(中英文), 2020, 48(2): 154-161.
引用本文: 黄澎, 李文博, 毛学锋, 赵鹏. 中温热解焦油重馏分悬浮床加氢裂化的研究[J]. 燃料化学学报(中英文), 2020, 48(2): 154-161.
HUANG Peng, LI Wen-bo, MAO Xue-feng, ZHAO Peng. Study on suspension bed hydrocracking of medium temperature pyrolytic heavy tar fraction[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 154-161.
Citation: HUANG Peng, LI Wen-bo, MAO Xue-feng, ZHAO Peng. Study on suspension bed hydrocracking of medium temperature pyrolytic heavy tar fraction[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 154-161.

中温热解焦油重馏分悬浮床加氢裂化的研究

基金项目: 

国家重点研发计划 2016YFB0600305

国家自然科学基金重点项目 U1610221

详细信息
  • 中图分类号: TQ536

Study on suspension bed hydrocracking of medium temperature pyrolytic heavy tar fraction

Funds: 

The project was supported by the National Key Research and Development Project 2016YFB0600305

the National Natural Science Foundation of China U1610221

More Information
  • 摘要: 以中温热解煤焦油为原料, 对其性质进行了分析, 其中, >350 ℃重质馏分中胶质含量30.88%, 沥青质含量37.27%, 四氢呋喃不溶物3.36%, 属于常规固定床加氢裂化难以直接处理的馏分。合成了一种Mo系超分散催化剂, 采用FT-IR、XPS、XRD、SEM和TEM等对催化剂进行了表征, 催化剂中含有Mo=O和Mo-S特征结构, 活性金属的硫化率为84.34%, 在体系中具有优良的分散性, 在反应体系内原位分解为超分散MoS2颗粒;在0.25 t/d连续装置上进行了热解重油悬浮床加氢裂化实验研究, 考察了反应条件对产物分布情况和结焦率的影响, 得出适宜的反应条件为19 MPa, 440 ℃, 催化剂的添加量为300 mg/kg;此条件下石脑油收率24.47%, 柴油馏分收率49.71%, 结焦率1.32%。
  • 图  1  煤焦油及其重油馏分组分分析

    Figure  1  Analysis of coal tar and heavy tar fraction components

    图  2  悬浮床加氢裂化实验流程示意图

    Figure  2  Flowchart of suspension slurry-bed hydro-cracking

    1: preparation tank; 2: measuring tank; 3: hydrogen compressor; 4: recycle hydrogen compressor; 5: preheater; 6: suspension slurry-bed reactor; 7: high-temperature separator; 8: low-temperature separator; 9: oil receiving tank; 10: atmospheric distillation unit; 11: vacuum distillation unit

    图  3  催化剂红外光谱谱图

    Figure  3  FT-IR spectrum of a catalyst

    图  4  催化剂全幅XPS扫描图

    Figure  4  XPS pattern of a catalyst(all region)

    图  5  催化剂Mo 3d峰XPS谱图

    Figure  5  XPS pattern of a catalyst(Mo 3d region)

    图  6  催化剂S 2p峰XPS谱图

    Figure  6  XPS pattern of a catalyst(S 2p region)

    图  7  催化剂热重分析曲线

    Figure  7  TG-DTG curves of a catalyst

    图  8  催化剂在反应器分解前后XRD谱图对比

    Figure  8  Comparison of XRD patterns of catalysts before(a) and after (b) decomposition in reactor

    图  9  分解后催化剂的粒径分布

    Figure  9  Particle size distributions of the catalyst after decomposition

    图  10  分解后催化剂SEM照片

    Figure  10  SEM image of the catalystafter decomposition

    图  11  分解后催化剂TEM照片

    Figure  11  TEM image of the catalyst after decomposition

    图  12  反应温度对产物分布的影响

    Figure  12  Effect of reaction temperature on product distribution

    图  13  反应温度对残渣收率和结焦率的影响

    Figure  13  Effect of reaction temperature on residue yield and coking rate

    图  14  反应压力对产物分布的影响

    Figure  14  Effect of reaction pressure on product distribution

    图  15  反应压力对残渣收率和结焦率的影响

    Figure  15  Effect of reaction pressure on residue yield and coking rate

    图  16  催化剂添加量对产物分布的影响

    Figure  16  Effect of catalyst addition on product distribution

    图  17  催化剂添加量对残渣收率和结焦率的影响

    Figure  17  Effect ofcatalyst addition on residue yield and coking rate

    图  18  生成焦炭的SEM照片

    Figure  18  SEM images of coke

    (a): absence of catalyst; (b): 300 mg/kg catalyst addition

    表  1  煤焦油和煤焦油重油馏分性质

    Table  1  Properties of the coal tar and heavy tar fraction

    Property Sample
    coal tar heavy tar fraction
    Density /(g·cm-3) 1.05 1.16
    H w/% 8.63 7.56
    C w/% 84.56 85.72
    O w/% 5.83 5.41
    S w/% 0.35 0.39
    N w/% 0.63 0.92
    下载: 导出CSV

    表  2  催化剂Mo 3d峰XPS拟合数据

    Table  2  Fitting data of XPS patterns(Mo 3d region)

    Peak Binding energy E/eV Valence Area ratio /%
    1 227.1 Mo4+3d5/2 20.2
    2 230.4 Mo4+3d3/2 50.3
    3 235.6 Mo6+3d5/2 25.1
    4 237.5 Mo6+3d3/2 0.3
    下载: 导出CSV

    表  3  催化剂S 2p峰XPS拟合数据

    Table  3  Fitting data of XPS patterns (S 2p region)

    Peak Binding energy E/eV Valence Area ratio /%
    1 163.6 S2- 85
    2 169.5 S2+ 15
    下载: 导出CSV
  • [1] 马宝岐, 任沛建, 杨占彪, 王树宽.煤焦油制燃料油品[M].北京:化学工业出版社, 2011. http://www.bookask.com/book/974904.html

    MA Bao-qi, REN Pei-jian, YANG Zhan-biao, WANG Shu-kuan. Preparation of Fuel Oil from Coal Tar[M]. Beijing: Chemical Industry Press, 2011. http://www.bookask.com/book/974904.html
    [2] 刘贞贞, 方梦祥, 马帅, 骆仲泱. NiMoP/γ-Al2O3催化剂的煤焦油加氢性能研究[J].燃料化学学报, 2016, 44(5): 579-586. doi: 10.3969/j.issn.0253-2409.2016.05.010

    LIU Zhen-zhen, FANG Meng-xiang, MA Shuai, LUO Zhong-yang. Hydrogenation of coal tar on NiMoP/γ-Al2O3 catalyst[J]. J Fuel Chem Technol, 2016, 44(5): 579-586. doi: 10.3969/j.issn.0253-2409.2016.05.010
    [3] KAN T, WANG H Y, HE H X, LI C X, ZHANG S J.Experimental study on two-stage catalytic hydroprocessing of middle-temperature coal tar to clean liquid fuels[J].Fuel, 2011, 90(11): 3404-3409. doi: 10.1016/j.fuel.2011.06.012
    [4] DALAMA K, STANISLAUS A. Comparison between deactivation pattern of catalysts in fixed-bed and ebullating-bed residue hydroprocessing units[J]. Chem Eng J, 2006, 120(1/2): 33-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4de1096d771484b131dff066ecd974c3
    [5] 薛倩, 张雨, 刘名瑞, 张会成.煤焦油沸腾床加氢制备180号船用燃料油调合组分[J].石油炼制与化工, 2015, 46(10):88-92. doi: 10.3969/j.issn.1005-2399.2015.10.017

    XUE Qian, ZHANG Yu, LIU Ming-rui, ZHANG Hui-cheng.Preparation of 180# marine fuel oil by ebullated-bed hydrotreatment of medium temperature coal tar[J]. Pet Process Petrochem, 2015, 46(10): 88-92. doi: 10.3969/j.issn.1005-2399.2015.10.017
    [6] MENG Z H, YANG T, FANG X C. Experimental study of integrated ebullated-bed and fixed-bed for hydrotreating mid-low temperature coal tar to clean fuel[J].China Pet Process Petrochem Technol, 2016, 18(3):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsyjgysyhgjs201603001
    [7] 吴乐乐, 李金璐, 邓文安, 张英红, 李传.煤焦油重组分甲苯不溶物结构组成及对悬浮床加氢裂化生焦的影响[J].燃料化学学报, 2015, 43(8):923-931. doi: 10.3969/j.issn.0253-2409.2015.08.004

    WU Le-le, LI Jin-lu, DENG Wen-an, ZHANG Ying-hong, LI Chuan. Structure of toluene insoluble coal tar heavy fraction and its relevance to the coking behavior in slurry-bed hydrocracking[J]. J Fuel Chem Technol, 2015, 43(8): 923-931. doi: 10.3969/j.issn.0253-2409.2015.08.004
    [8] KAN T, SUN X Y, WANG H Y, LI C S. Production of gasoline and diesel from coal tar via its catalytic hydrogenation in serial fixed beds[J]. Energy Fuels, 2012, 26(6): 3604-3611. doi: 10.1021/ef3004398
    [9] XUE F F, LI D, GUO Y T, LI X. Technical progress and the prospect of low-rank coal pyrolysis in china[J]. Energy Technol, 2017, 5(11): 1897-1907. doi: 10.1002/ente.201700203
    [10] MA Z Z, GAO N B, ZHANG L, LI A M. Modeling and simulation of oil sludge pyrolysis in a rotary kiln with a solid heat carrier: Considering the particle motion and reaction kinetics[J]. Energy Fuels, 2014, 28(9): 6029-6037. doi: 10.1021/ef501263m
    [11] 曲旋, 张荣, 孙东凯, 毕继诚.固体热载体热解霍林河褐煤实验研究[J].燃料化学学报, 2011, 39(2): 85-89. doi: 10.3969/j.issn.0253-2409.2011.02.002

    QU Xuan, ZHANG Rong, SUN Dong-Kai, BI Ji-cheng.Experiment study on pyrolysis of Huolinhe lignite with solid heat carrier[J].J Fuel Chem Technol, 2011, 39(2): 85-89. doi: 10.3969/j.issn.0253-2409.2011.02.002
    [12] LIANG P, WANG Z F, BI J C. Simulation of coal pyrolysis by solid heat carrier in a moving-bed pyrolyzer[J]. Fuel, 2008, 87(4): 435-442. doi: 10.1016-j.fuel.2007.06.022/
    [13] 张飏.低阶粉煤热解半焦规模化利用技术研究进展[J].煤质技术, 2018, 7(4):1-9. doi: 10.3969/j.issn.1007-7677.2018.04.001

    ZHANG Yang. Research progress of semi-cokelarge-scale utilization technology of low rank pulverized coal pyrolysis[J].Coal Quality Technol, 2018, 7(4):1-9. doi: 10.3969/j.issn.1007-7677.2018.04.001
    [14] LIANG P, WANG Z F, BI J C.Process characteristics investigation of simulated circulating fluidized bed combustion combined with coal pyrolysis[J]. Fuel Process Technol, 2007, 88(1):23-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0e1baf3872ed09e492cf5a54946133e5
    [15] GENG C C, LI S Y, LIU S H, HOU J L. Flash pyrolysis of coal with solid heat carrier in a fluidized bed[J]. Adv Mater Res, 2014, 953/954: 1153-1156. https://www.researchgate.net/publication/271981062_Flash_Pyrolysis_of_Coal_with_Solid_Heat_Carrier_in_a_Fluidized_Bed
    [16] WANG Q H, ZHANG R, LUO Z Y, FANG M X. Effects of pyrolysis atmosphere and temperature on coal char characteristics and gasification reactivity[J]. Energy Technol, 2016, 4(4): 543-550. doi: 10.1002/ente.201500366
    [17] YE C, WANG Q H, LUO Z Y, XIE G L, JIN K, MUHTAR S, CEN K F. Characteristics of coal partial gasification on a circulating fluidized bed reactor[J]. Energy Fuels, 2017, 31(3): 2557-2564. doi: 10.1021/acs.energyfuels.6b02889
    [18] JIA X, WANG Q H, CEN K F, CHEN L M. An experimental study of CaSO4 decomposition during coal pyrolysis[J]. Fuel, 2016, 163: 157-165. doi: 10.1016/j.fuel.2015.09.054
    [19] GUO Z H, WANG Q H, FANG M X, LUO Z Y, CEN K F. Thermodynamic and economic analysis of polygeneration system integrating atmospheric pressure coal pyrolysis technology with circulating fluidized bed power plant[J]. Appl Energy, 2014, 113(1): 1301-1314. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f06ddd716b4f251a3a25d3ac9a0a93ac
    [20] 吴青.悬浮床加氢裂化——劣质重油直接深度高效转化技术[J].炼油技术与工程, 2014, 44(2): 1-9. doi: 10.3969/j.issn.1002-106X.2014.02.001

    WU Qing. Suspended-bed hydrocracking process——a deep high efficiency conversion process in rapid development for processing low-quality heavy oils[J]. Pet Refin Eng, 2014, 44(2): 1-9. doi: 10.3969/j.issn.1002-106X.2014.02.001
    [21] 周家顺, 邓文安, 梁士昌, 刘东, 阙国和.渣油悬浮床加氢裂化与固定床加氢脱硫工艺的比较[J].炼油技术与工程, 2001, 31(2): 14-17. doi: 10.3969/j.issn.1002-106X.2001.02.004

    ZHOU Jia-shun, DENG Wen-an, LIANG Shi-chang, LIU Dong, QUE Guo-he. Comparison between suspended bed hydrocracking and fixed bed hydro-desulfurizing[J]. Pet Refin Eng, 2001, 31(2): 14-17. doi: 10.3969/j.issn.1002-106X.2001.02.004
    [22] BAKER M A, GILMORE R, LENARDI C, GISSLER W. XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions[J]. Appl Surf Sci, 1999, 150(1/4): 255-262.
    [23] 刘东, 张继昌, 赵英男, 阙国和.渣油悬浮床加氢分散型Mo催化剂硫化程度的XPS分析[J].石油学报(石油加工), 2007, 23(5): 33-37. doi: 10.3969/j.issn.1001-8719.2007.05.006

    LIU Dong, ZHANG Ji-chang, ZHAO Ying-nan, QUE Guo-he.XPS study on the sulfurization of dispersed Mo catalyst for slurry-bed hydroprocessing of residue[J]. Acta Pet Sin(Pet Process Sect), 2007, 23(5): 33-37. doi: 10.3969/j.issn.1001-8719.2007.05.006
    [24] WINTERBOTTOM J M, KHAN Z, RAYMAHASAY S, KNIGHT G. A comparison of triglyceride oil hydrogenation in a downflow bubble column using slurry and fixed bed catalysts[J]. J Appl Chem Biotechnol, 2000, 75(11): 1015-1025. doi: 10.1002/1097-4660(200011)75:11<1015::AID-JCTB304>3.0.CO;2-7
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  29
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-20
  • 修回日期:  2020-01-16
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回