留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤和生物质化学链气化中铜基载氧体与灰分的碳热反应研究

程丹琰 雍其润 龚本根 赵永椿 张军营

程丹琰, 雍其润, 龚本根, 赵永椿, 张军营. 煤和生物质化学链气化中铜基载氧体与灰分的碳热反应研究[J]. 燃料化学学报(中英文), 2020, 48(1): 18-27.
引用本文: 程丹琰, 雍其润, 龚本根, 赵永椿, 张军营. 煤和生物质化学链气化中铜基载氧体与灰分的碳热反应研究[J]. 燃料化学学报(中英文), 2020, 48(1): 18-27.
CHENG Dan-yan, YONG Qi-run, GONG Ben-gen, ZHAO Yong-chun, ZHANG Jun-ying. Carbothermal interaction between Cu-based oxygen carrier and ash minerals in the chemical-looping gasification of coal and biomass[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 18-27.
Citation: CHENG Dan-yan, YONG Qi-run, GONG Ben-gen, ZHAO Yong-chun, ZHANG Jun-ying. Carbothermal interaction between Cu-based oxygen carrier and ash minerals in the chemical-looping gasification of coal and biomass[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 18-27.

煤和生物质化学链气化中铜基载氧体与灰分的碳热反应研究

基金项目: 

国家自然科学基金 41672148

详细信息
  • 中图分类号: TQ54

Carbothermal interaction between Cu-based oxygen carrier and ash minerals in the chemical-looping gasification of coal and biomass

Funds: 

National Natural Science Foundation of China 41672148

More Information
  • 摘要: 从反应温度、灰的种类和灰的比例三个方面,对煤和生物质化学链气化过程中铜基载氧体与灰中矿物的碳热反应过程进行了研究;通过往复切换固定床的氧化还原气氛模拟化学链气化的循环过程,利用XRD和SEM-EDS等表征手段并结合热力学计算对产物进行分析。结果表明,灰中Fe2O3和Al2O3易与CuO/Cu2O反应形成CuAl2O4、Cu2Fe2O4和CuFe2O4等尖晶石结构的物质,而CaO能够通过阻碍Cu-Al和Cu-Si复合化合物的形成来缓解铜基载氧体的烧结。温度升高促使CuO极易与CaSiO3和MgSiO3等硅酸盐矿物发生固-固反应,生成CaCuSi2O6和CuMgSi2O6等而降低铜基载氧体的反应活性。随着灰分比例的增加,Ca2+和Fe3+等离子富集所生成的Ca2Fe9O13易与SiO2发生反应生成高熔点的CaFeSi2O6三相共熔体,与铜基载氧体共熔并覆盖在载氧体表面,阻碍其释氧性能。
  • 图  1  四种灰原样的XRD谱图

    Figure  1  XRD patterns of four kinds of ash

    Q: SiO2; H: Fe2O3; Ca: Al2O3; C: CaCO3; Ar: MgAl2O4; Sy: KCl; S: Al2SiO5; Pe: MgO

    图  2  实验流程示意图

    Figure  2  Schematic layout of fixed bed reaction system

    图  3  不同灰组分与CuO之间主要反应ΔG0-T

    Figure  3  ΔG0-T diagram of main reactions between ash components and CuO

    图  4  CuO 10次循环后XRD谱图及SEM照片

    Figure  4  XRD patterns and SEM image of CuO after 10 cycles reaction CP: Cu2O; CO: CuO; Cu: Cu

    图  5  CuO与四种灰的混合物(4:1)在900 ℃下不同循环次数后的XRD谱图

    Figure  5  XRD patterns of CuO and four kinds of ashs (4:1) at different cycles at 900 ℃

    (a): CuO+GY ash; (b): CuO+SM ash; (c): CuO+DC ash; (d): CuO+LJ ash CP: Cu2O; Q: SiO2; CS: CaSiO3; CF: Cu2Fe2O4; CO: CuO; CI: Ca2Fe9O13; CF5: Ca2FeAlO5; CA: CuAl2O4; CCS: CaCuSi2O6; CA8: CaAl2Si2O8; CC: CaCuO2; V: CuFeS2; M: Fe3O4; CF2: CuFe2O4; CM: CuMgSi2O6; He: CaFeSi2O6; D: CaMgSi2O6; DS: Ca0.8Mg1.2(SiO3)2; CA2: CaAl2O4; MC: (Mg0.03Ca0.97) ·CO3

    图  6  四种灰不同循环次数产物晶相变化

    Figure  6  Variation of mineral phases of CuO and four kinds of ash after different cycles

    (a): CuO +GY ash; (b): CuO +SM ash; (c): CuO+DC ash; (d): CuO +LJ ash

    图  7  CuO与辣椒杆灰(4:1)在不同温度下的XRD谱图及其晶相变化

    Figure  7  XRD patterns and variation of mineral phases of CuO+ LJ ash (1:1) at different temperatures

    CO: CuO; CP: Cu2O; CI: Ca2Fe9O13; DS: Ca0.8Mg1.2(SiO3)2; D: CaMgSi2O6; MC: (Mg0.03Ca0.97)·CO3; CC: CaCuO2; CM: CuMgSi2O6; CM2: Cu2Mg5SiO22(OH)2; He: CaFeSi2O6; CCS: CaCuSi2O6

    图  8  CuO与不同比例辣椒杆灰(9:1/1:1)在900 ℃下循环的XRD谱图及其晶相变化

    Figure  8  XRD patterns and variation of mineral phases of CuO and different ratios of LJ ash (9:1/1:1) at 900 ℃

    CI2: CaFe2O4; CP: Cu2O; CO: CuO; Mo: Ca(Mg0.88Fe0.12)SiO4; He: CaFeSi2O6; CC: CaCuO2; CA: CuAl2O4; CI: Ca2Fe9O13; D: CaMgSi2O6; Mo2: Ca(Mg0.93Fe0.07)SiO4; CM: CuMgSi2O6; CM2: Cu2Mg5SiO22(OH)2; CCS: CaCuSi2O6; CF: Cu2Fe2O4; CA2: CaAl2O4

    图  9  新鲜CuO载氧体(a)和CuO+灰(b)循环反应前SEM照片

    Figure  9  SEM images of fresh Cu-based oxygen carrier (a) and CuO+ ash (b) before reaction

    图  10  循环反应后复合铜化合物的SEM照片及对应点的能谱图

    Figure  10  SEM images and EDS analysis of composite copper compound

    (a): CuO+LJ ash after 10 cycles at 900 ℃; (b): CuO+GY ash after 10 cycles at 900 ℃; (c): CuO+SM ash after 10 cycles at 900 ℃; (d): CuO+DC ash after 10 cycles at 900 ℃

    图  11  CuO与矿物固相反应机理示意图

    Figure  11  Proposed mechanism for the solid reaction between CuO and minerals

    表  1  四种灰化学组分分析

    Table  1  Chemical composition of four kinds of ash

    Type of ash Content w/%
    SiO2 Al2O3 Fe2O3 CaO MgO Na2O SO3 K2O P2O5 others
    GY 51.43 18.9 11 3.46 0.98 3.77 3.08 0.42 5.18 1.76
    LJ 10.93 6.59 2.13 20.89 15.18 2.42 11.09 22.68 7.94 0.1
    DC 57.29 3.87 1.05 7.9 1.67 3.14 1.42 19.15 4.26 0.24
    SM 7.62 3.77 2.08 59.14 5.13 0.95 2.72 12.65 5.68 0.27
    notes: four kinds of ashes, viz., GY, LJ, DC and SM were obtained from Guanyun coal, chili stick, rice straw and apple tree timber, respectively, by cineration at 600-800 ℃
    下载: 导出CSV

    表  2  主要反应及其吉布斯-亥姆霍兹方程

    Table  2  Main reactions and the corresponding equations to get the Gibbs-Helmholtz energy

    No. Reaction equation ΔG0/(kJ·mol-1)
    1 Al2O3+CuO=CuAl2O4 24.11152-0.0208T
    2 Fe2O3+CuO=CuFe2O4 13.389-0.01672T
    3 Fe2O3+Cu2O=2CuFeO2 -30.125+0.002637T
    4 SiO2+CuO=CuSiO3 -13.179+0.007572T
    5 CaO+CuO=CaCuO2 41.148-0.04236T
    6 CaO+SiO2=CaSiO3 -82.007-0.006235T
    7 CaO+Al2O3=CaAl2O4 -13.398-0.02333T
    8 CO(g)+2CuO=Cu2O+CO2(g) -141.545-0.02385T
    9 CO(g)+CuO=Cu+CO2(g) -127.11-0.006623T
    10 CO(g)+Cu2O=2Cu+CO2(g) -112.675+0.0106T
    11 CO(g)+CuAl2O4=Cu+Al2O3+CO2(g) -115.749+0.01415T
    12 CO(g)+CuFe2O4=Cu+Fe2O3+ CO2(g) -94.499+0.010096T
    13 CO(g)+2CuFeO2=2Cu+Fe2O3+CO2(g) -82.55+0.007966T
    14 CO (g)+CuSiO3=Cu+SiO2+CO2(g) -71.589+0.006486T
    15 CO (g)+CaCuO2 = Cu+CaO+CO2(g) -123.358+0.03574T
    下载: 导出CSV

    表  3  EDS元素组成

    Table  3  Element composition of the composite copper compounds at the points 1-4 shown in Figure 10

    1# 2# 3# 4#
    element w/% watom/% element w/% watom/% element w/% watom/% element w/% watom/%
    O 23.25 57.6 O 32.63 63 O 18.91 50.2 O 34.6 66.61
    Si 1.16 1.64 Al 17.03 19.5 Fe 25.15 19.1 Si 12.37 13.56
    K 1.24 1.64 Cu 21.45 10.4 Cu 37.97 25.2 Cu 26.04 12.53
    Ca 22.81 22.6 Ca 9.28 7.17 Ca 2.89 3.07 Ca 9.41 7.25
    Cu 40.28 16.9 Si 1.69 2, 56
    下载: 导出CSV
  • [1] STOCKER T F, QIN D H, PLATTNER G K, TIGNOR M M B, ALLEN S K, BOSCHUNG J, NAUELS A, XIA Y, BEX V, MIDGLEY P M. Climate Change 2013(IPCC):The Physical Science Basis[M]. Cambridge:Cambridge University Press, 2013.
    [2] ADÁNEZ J, ABAD A, GARCÍA-LABIANO F, GAYÁN P, DE DIEGO L F. Progress in combustion and reforming technologies[J]. Prog Energy Combust Sci, 2012, 38:215-282. doi: 10.1016/j.pecs.2011.09.001
    [3] ADÁNEZ J, ABAD A, MENDIARA T, GAYÁN P, DE DIEGO L F, GARCÍA-LABIANO F. Chemical looping combustion of solid fuels[J]. Prog Energy Combust Sci, 2018, 65:6-66. doi: 10.1016/j.pecs.2017.07.005
    [4] GUO Q J, CHENG Y, LIU Y Z, JIA W H, RYU H J. Coal chemical looping gasification for syngas generation using an iron-based oxygen carrier[J]. Ind Eng Chem Res, 2014, 53(1):78-86. doi: 10.1021/ie401568x
    [5] HE F, GALINSKY N, LI F X. Chemical looping gasification of solid fuels using bimetallic oxygen carrier particles-Feasibility assessment and process simulations[J]. Int J Hydrogen Energy, 2013, 38(19):7839-7854. doi: 10.1016/j.ijhydene.2013.04.054
    [6] 王旭锋, 刘晶, 刘丰.基于CoFe2O4载氧体的生物质化学链气化热力学分析及实验研究[J].燃料化学学报, 2019, 47(3):306-311. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb201903007

    WANG Xu-feng, LIU Jing, LIU Feng. Thermodynamic analysis and experimental studies on chemical looping gasification of biomass with CoFe2O4 as oxygen carrier[J]. J Fuel Chem Technol, 2019, 47(3):306-311. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb201903007
    [7] GAYÁN P, ADÁNEZ-RUBIO I, ABAD A, DE DIEGO L F, GARCÍA-LABIANO F, ADÁNEZ J. Development of Cu-based oxygen carriers for chemical-looping with oxygen uncoupling (CLOU) process[J]. Fuel, 2012, 96:226-238. doi: 10.1016/j.fuel.2012.01.021
    [8] CHO P, MATTISSON T, LYNGFELT A. Comparison of iron-, nickel-, copper-and manganese-based oxygen carriers for chemical-looping combustion[J]. Fuel, 2004, 83:1215-1225. doi: 10.1016/j.fuel.2003.11.013
    [9] FORUTAN H R, KARIMI E, HAFIZI A, RAHIMPOUR M R, KESHAVARZ P. Expert representation chemical looping reforming:A comparative study of Fe, Mn, Co and Cu as oxygen carriers supported on Al2O3[J]. J Ind Eng Chem, 2015, 21:900-911. doi: 10.1016/j.jiec.2014.04.031
    [10] ABAD A, ADÁNEZ J, GARCÍA-LABIANO F, DE DIEGO L F, GAYÁN P, CELAYA J. Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion[J]. Chem Eng Sci, 2007, 62(1/2):533-549. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b86ad0cb264808b4248ca2d05ecac758
    [11] ZENG J M, XIAO R, ZHANG S, ZHANG H Y, ZENG D W, QIU Y, MA Z. Identifying iron-based oxygen carrier reduction during biomass chemical looping gasification on a thermogravimetric fixed-bed reactor[J]. Appl Energy, 2018, 229:404-412. doi: 10.1016/j.apenergy.2018.08.025
    [12] SAHA C, BHATTACHARYA S. Chemical looping combustion of low-ash and high-ash low rank coals using different metal oxides-A thermogravimetric analyser study[J]. Fuel, 2012, 97:137-150. doi: 10.1016/j.fuel.2012.02.012
    [13] BAO J H, LI Z S, CAI N S. Interaction between iron-based oxygen carrier and four coal ashes during chemical looping combustion[J]. Appl Energy, 2014, 115:549-558. doi: 10.1016/j.apenergy.2013.10.051
    [14] GU H M, SHEN L H, ZHONG Z P, ZHOU Y F, LIU W D, NIU X, GE H J, JIANG S X, WANG L L. Interaction between biomass ash and iron ore oxygen carrier during chemical looping combustion[J]. Chem Eng J, 2015, 277:70-78. doi: 10.1016/j.cej.2015.04.105
    [15] ILYUSHECHKIN A Y, KOCHANEK M, LIM S. Interactions between oxygen carriers used for chemical looping combustion and ash from brown coals[J]. Fuel Process Technol, 2015, 147:71-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f044922d9a31c23e4b492da93180ded3
    [16] DAI J Z, WHITTY K. Effects of coal ash on CuO as an oxygen carrier for chemical looping with oxygen uncoupling[J]. Energy Fuels, 2018, 32(11):11656-11665. doi: 10.1021/acs.energyfuels.8b02521
    [17] KELLER M, ARJMAND M, LEION H, MATTISSON T. Interaction of mineral matter of coal with oxygen carriers in chemical-looping combustion (CLC)[J]. Chem Eng Res Des, 2014, 92(9):1753-1770. doi: 10.1016/j.cherd.2013.12.006
    [18] SAHA C, ZHANG S, HEIN K, XIAO R, BHATTACHARYA S. Chemical looping combustion (CLC) of two Victorian brown coals-Part 1:Assessment of interaction between CuO and minerals inherent in coals during single cycle experiment[J]. Fuel, 2013, 104:262-274. doi: 10.1016/j.fuel.2012.08.009
    [19] SAHA C, ZHANG S, XIAO R, BHATTACHARYA S. Chemical Looping Combustion (CLC) of two Victorian brown coals-Part 2:Assessment of interaction between CuO and minerals inherent in coals during multi cycle experiments[J]. Fuel, 2012, 96:335-347. doi: 10.1016/j.fuel.2012.01.048
    [20] JIANG S, SHEN L, WU J, YAN J, SONG T. The investigations of hematite-CuO oxygen carrier in chemical looping combustion[J].Chem Eng J, 2017, 317:132-42. doi: 10.1016/j.cej.2017.01.091
    [21] JACOB K T, ALCOCK C B. Thermodynamics of CuA1O2 and CuA12O4 and phase equilibria in the system Cu2O-CuO-Al2O3[J]. J Am Ceram Soc, 1974, 58(5/6):192-195.
    [22] MROVĚC M, LEITNEŘ J, NEVRIVA M, SEDMIDUBSKY D, STEJSKAL J. Thermochemical properties of MeCuO2 and Me2CuO3 (Me=Ca, Sr, Ba) mixed oxides[J]. Thermochim Acta, 1998, 318(1/2):63-70. https://www.sciencedirect.com/science/article/abs/pii/S004060319800330X
    [23] 叶大伦, 胡建华.实用无机物热力学数据手册[M].二版.北京: 冶金工业出版社, 2002.

    YE Da-lun, HU Jian-hua. Handbook of Thermodynamic Data of Inorganic[M]. 2nd ed. Beijing: Metallurgical Industry Press, 2002.
    [24] ZHAO Y C, ZHANG J Y, TIAN C, LI H, SHAO X, ZHENG C. Mineralogy and chemical composition of high-calcium fly ashes and density fractions from a coal-fired power plant in china[J]. Energy Fuels, 2010, 16(4):907-16.
    [25] SAN PIO M A, GALLUCCI F, ROGHAIR I, VAN SINT ANNALAND M. On the mechanism controlling the redox kinetics of Cu-based oxygen carriers[J]. Chem Eng Res Des, 2017, 124:193-201. doi: 10.1016/j.cherd.2017.06.019
    [26] DAI J Z, WHITTY K J. Predicting and alleviating coal ash-induced deactivation of CuO as an oxygen carrier for chemical looping with oxygen uncoupling[J]. Fuel, 2019, 241:1214-1222. doi: 10.1016/j.fuel.2019.02.029
    [27] DEAN J A. Lange's Handbook of Chemistry[M]. New York:McGraw-Hill, 1999.
    [28] NIU Y Q, TAN H Z, HUI S E. Ash-related issues during biomass combustion:Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures[J]. Prog Energy Combust Sci, 2016, 52:1-61. doi: 10.1016/j.pecs.2015.09.003
    [29] 雍其润, 龚本根, 赵永椿, 张军营.高硅煤中Si-Al-Fe-Ca四元体系碳热反应研究[J].燃料化学学报, 2017, 45(11):1296-1302. doi: 10.3969/j.issn.0253-2409.2017.11.003

    YONG Qi-run, GONG Ben-gen, ZHAO Yong-chun, ZHANG Jun-ying. Carbothermal reduction of Si-Al-Fe-Ca quaternary system in a high-silica coal[J]. J Fuel Chem Technol, 2017, 45(11):1296-1302. doi: 10.3969/j.issn.0253-2409.2017.11.003
    [30] YAN J C, GE H J, JIANG S X, GU H M, SONG T, GUO Q J, SHEN L H. Effect of sodium removal on chemical looping combustion of high-sodium coal with hematite as an oxygen carrier[J]. Energy Fuels, 2019, 33(3):2153-2165. doi: 10.1021/acs.energyfuels.9b00044
    [31] NAMKUNG H, HU X F, KIM H T, WANG F C, YU G S. Evaluation of sintering behavior of ash particles from coal and rice straw using optical heating stage microscope at high temperature fouling conditions[J]. Fuel Process Technol, 2016, 149:195-208. doi: 10.1016/j.fuproc.2016.04.020
    [32] SCALA F, CHIRONE R. An SEM/EDX study of bed agglomerates formed during fluidized bed combustion of three biomass fuels[J]. Biomass Bioenergy, 2008, 32(3):252-266. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e2edd64ccfeb9aabbab5b9554c999c48
    [33] CHIRONE R, MICCIO F, SCALA F. Mechanism and prediction of bed agglomeration during fluidized bed combustion of a biomass fuel:Effect of the reactor scale[J]. Chem Eng J, 2006, 123(3):71-80. doi: 10.1016/j.cej.2006.07.004
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  176
  • HTML全文浏览量:  77
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-12
  • 修回日期:  2019-11-20
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-01-10

目录

    /

    返回文章
    返回