留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载型氨基酸离子液体的制备及其对二氧化碳的吸附性能

杨刚胜 曾淦宁 赵强 陈徐 陈盛积 艾宁

杨刚胜, 曾淦宁, 赵强, 陈徐, 陈盛积, 艾宁. 负载型氨基酸离子液体的制备及其对二氧化碳的吸附性能[J]. 燃料化学学报(中英文), 2016, 44(1): 106-112.
引用本文: 杨刚胜, 曾淦宁, 赵强, 陈徐, 陈盛积, 艾宁. 负载型氨基酸离子液体的制备及其对二氧化碳的吸附性能[J]. 燃料化学学报(中英文), 2016, 44(1): 106-112.
YANG Gang-sheng, ZENG Gan-ning, ZHAO Qiang, CHEN Xu, CHEN Sheng-ji, AI Ning. Preparation of silica gel supported amino acid ionic liquids and their performance capacity towards carbon dioxide[J]. Journal of Fuel Chemistry and Technology, 2016, 44(1): 106-112.
Citation: YANG Gang-sheng, ZENG Gan-ning, ZHAO Qiang, CHEN Xu, CHEN Sheng-ji, AI Ning. Preparation of silica gel supported amino acid ionic liquids and their performance capacity towards carbon dioxide[J]. Journal of Fuel Chemistry and Technology, 2016, 44(1): 106-112.

负载型氨基酸离子液体的制备及其对二氧化碳的吸附性能

基金项目: 

浙江省科技厅公益项目 2013C33005

详细信息
    通讯作者:

    艾宁, Tel:0571-88320870, E-mail:aining@zjut.edu.cn

  • 中图分类号: TQ028

Preparation of silica gel supported amino acid ionic liquids and their performance capacity towards carbon dioxide

Funds: 

The project was supported by the Public Welfare Project of Science and Technology Department of Zhejiang Province 2013C33005

More Information
  • 摘要: 采用浸渍蒸发法将四甲基铵甘氨酸([N1111][Gly]) 和四甲基铵赖氨酸([N1111][Lys]) 两种离子液体分别负载到硅胶(SG) 表面, 利用EA、TGA、BET和FT-IR等技术对所得到的吸附剂进行表征, 考察了离子液体种类、离子液体负载量和温度等条件对其CO2吸附性能的影响。结果表明, 离子液体成功负载到硅胶表面, 所制得的负载型氨基酸离子液体对二氧化碳具有良好的吸附性能。在所考察的温度范围(303.15-323.15 K) 内, 温度越高, 平衡吸附量越小; 在负载量为10%-60%, 随着负载量的增加, 平衡吸附量先增加后减小。对于[N1111][Gly]/SG, 当负载量为22.4%(质量分数)、吸附温度为30 ℃、压力为0.1 MPa时, 二氧化碳的平衡吸附量可达到41 mg/g (相对于1 mol AAILs吸附0.62 mol CO2), 而且, 吸附20 min即可达到平衡吸附量的90%。吸附剂在循环使用六次之后, 其结构与性能均保持良好。
  • 图  1  [N1111][Gly]/SG的红外光谱谱图

    Figure  1  FT-IR spectra of pure SG (a), [N1111][Gly]/SG (b) and [N1111][Gly]/SG (c) after regeneration

    图  2  [N1111][Gly]/SG的TG和DTG曲线

    Figure  2  TG and DTG curves of [N1111][Gly]/SG

    图  3  [N1111][Gly]/SG的离子液体负载量对CO2吸附效果的影响

    Figure  3  CO2 adsorption of [N1111][Gly]/SG sorbents with different ionic liquid loadings

    a: 0%;b: 8.6%;c: 16%;d: 22.4%;e: 23.4%;f: 34%;g: 57.3%

    图  4  温度、离子液体负载量对CO2吸附量的影响

    Figure  4  CO2 adsorption capacities of the sorbents with various ionic liquid loadings at different temperatures

    图  5  温度对吸附剂平衡吸附量的影响

    Figure  5  Equilibrium adsorption capacities of various absorbent towards CO2 at different temperatures

    a: 16.0% [N1111][Gly]; b: 22.4% [N1111][Gly]; c: 26.7% [N1111][Gly];
    d: 8.6% [N1111][Lys]; e: 16.2% [N1111][Lys]; f: 28.3% [N1111][Lys]

    图  6  [N1111][Gly]/SG吸附剂的质量和温度随时间的变化

    Figure  6  TGA mass and temperature curves against time for [N1111][Gly]/SG sorbent

    表  1  不同离子液体负载量制得吸附剂的元素组成

    Table  1  Elementary composition of the sorbents loading with different ionic liquid contents

    Sample Element content w/% Loading w/%(EA) Loading w/%(TG)
    C H N
    SG 0.09 0.738 0.04 0.00 0.00
    [N1111][Gly]/SG=1:5 8.54 2.839 3.01 16.04 16.01
    [N1111][Gly]/SG=1:3 13.90 4.521 5.00 26.64 26.67
    [N1111][Lys]/SG=1:5 9.51 2.616 3.15 16.45 16.18
    [N1111][Lys]/SG=1:3 14.72 4.234 4.88 25.48 25.27
    下载: 导出CSV

    表  2  不同负载量制得吸附剂的结构参数

    Table  2  Textual properties of the sorbents loading with different ionic liquid contents

    [N1111][Gly]/SG [N1111][Lys]/SG
    loading w/% Ap /(m2·g-1) vp /(cm3·g-1) dp /nm loading w/% Ap /(m2·g-1) vp /(cm3·g-1) dp /nm
    0.00 348.741 2 1.052 7.66 0.00 348.741 2 1.052 7.66
    8.63 286.897 5 0.952 7.12 8.56 278.346 7 0.974 7.40
    16.01 268.357 8 1.399 1 11.51 16.18 224.528 0.966 9 9.54
    26.67 140.036 8 1.083 2 15.78 28.27 150.876 9 0.822 5 11.40
    33.72 78.110 4 0.726 1 18.40 37.44 79.346 9 0.629 1 15.09
    44.51 23.456 9 0.268 2 18.75 47.51 10.479 0.177 6 22.16
    57.34 4.076 8 0.081 4 21.87 - - - -
    下载: 导出CSV

    表  3  不同吸附剂CO2吸附性能对比

    Table  3  Comparison of different adsorbents in their adsorption performance towards CO2

    Support Ionic liquid Number of amino Loading w/% t/℃ Csa/(mg·g-1) Csb(mol ratio) Ref.
    SG [N1111][Gly] 1 22.4 30 41 0.62 this work
    SG [N1111][Lys] 2 8.6 30 21 1.22 this work
    SG [NH3P-mim][BF4] 1 39.3 30 - 0.3 [15]
    SG [AEMP][Gly] 3 20 30 - 1.5 [23]
    SG [apaeP444][Gly] 3 32.4 25 72.6 1.29 [14]
    SG [apaeP444][Lys] 4 32.4 25 82.3 1.73 [14]
    Al2O3 [MEA]L 1 20 30 1.32 - [16]
    AC [NH3P-mim][BF4] 1 20 30 2.77 - [16]
    PAI [BMIM][Tf2N] 0 13.4 35 10.12 - [25]
    Sepiolite [Bmim][BF4] 1 13 0 19.2 - [26]
    PMMA [EMIM][Lys] 2 48.7 40 73.48 0.87 [27]
    PMMA [EMIM][Gly] 1 48.7 40 67.32 0.49 [27]
    note: Csa: CO2 adsorption capacity (mg CO2/g sorbent); Csb: CO2 adsorption capacity (mol CO2/mol AAILs)
    下载: 导出CSV
  • [1] GIANNOULAKIS S, VOLKART K, BAUER C. Life cycle and cost assessment of mineral carbonation for carbon capture and storage in European power generation[J]. Int J Greenhouse gas Control, 2014, 21(2): 140-157. https://www.researchgate.net/profile/Kathrin_Volkart/publication/259524328_Life_cycle_and_cost_assessment_of_mineral_carbonation_for_carbon_capture_and_storage_in_European_power_generation/links/0a85e53143f0543c26000000.pdf?disableCoverPage=true
    [2] FEI W Y, AI N, CHEN J. Capture and separation of greenhouse gases CO2-the challenge and opportunity for separation technology[J]. Chem Ind Eng Prog, 2005, 24(1): 1-4.
    [3] MACDOWELL N, FLORIN N, BUCHARD A, HALLETT J, GALINDO A, JACKSON G, ADJIMAN C S, WILLIAMS C K, SHAH N, FENNELL P. An overview of CO2 capture technologies[J]. Energy Environ Sci, 2010, 3(11): 1645-1669. doi: 10.1039/c004106h
    [4] HASIB-UR-RAHMAN M, SIAJ M, LARACHI F. Ionic liquids for CO2 capture-Development and progress[J]. Chem Eng Prog, 2010, 49(4): 313-322. doi: 10.1016/j.cep.2010.03.008
    [5] BLANCHARD L A, HANCU D, BECKMAN E J, BRENNECKE J F. Green processing using ionic liquid and CO2[J]. Nature, 1999, 399: 28-29. http://www.nature.com/nature/journal/v399/n6731/abs/399028b0.html
    [6] BATES E D, MAYTON R D, NTAI I, DAVIS J H, J R. CO2 capture by a task-specific ionic liquid[J]. J Am Chem Soc, 2002, 124(6): 926-927. doi: 10.1021/ja017593d
    [7] WANG C M, LUO X Y, ZHU X, CUI G K, JIANG D E, DENG D S, LI H R, DAI S. The strategies for improving carbon dioxide chemisorption by functionalized ionic liquids[J]. RSC Adv, 2013, 3(36): 15518-15527. doi: 10.1039/c3ra42366b
    [8] PENG H, ZHOU Y L, LIU J, ZHANG H B, XIA C L, ZHOU X H. Synthesis of novel amino-functionalized ionic liquids and their application in carbon dioxide capture[J]. RSC Adv, 2013, 3(19): 6859-6864. doi: 10.1039/c3ra23189e
    [9] WANG X F, AKHMEDOV N G, DUAN Y H, LUEBKE D, LI B Y. Immobilization of amino acid ionic liquids into nanoporous microspheres as robust sorbents for CO2 capture[J]. J Mater Chem A, 2013, 1(9): 2978-2982. doi: 10.1039/c3ta00768e
    [10] WANG X F, AKHMEDOV N G, DUAN Y H, LUEBKE D, HOPKINSON D, LI B Y. Amino acid functionalized ionic liquid solid sorbents for post-combustion carbon capture[J]. ACS Appl Mater Interfaces, 2013, 5(17): 8670-8677. doi: 10.1021/am402306s
    [11] JIANG B B, WANG X F, GRAY M L, DUAN Y H, LUEBKE D, LI B Y. Development of amino acid and amino acid-complex based solid sorbents for CO2 capture[J]. Appl Energy, 2013, 109(2): 112-118. https://www.researchgate.net/publication/257157570_Development_of_amino_acid_and_amino_acid-complex_based_solid_sorbents_for_CO2_capture
    [12] HANIOKA S, MARUYAMA T, SOTANI T, TERAMOTO M, MATSUYAMA H, NAKASHIMA K, HANAKI M, KUBOTA F, GOTO M. CO2 separation facilitated by task-specific ionic liquids using a supported liquid membrane[J]. J Membrane Sci, 2008, (1/2): 1-4. https://www.researchgate.net/publication/223332540_CO2_separation_facilitated_by_task-specific_ionic_liquids_using_a_supported_liquid_membrane
    [13] ZHANG J M, ZHANG S J, DONG K, ZHANG Y Q, SHEN Y Q, LV X M. Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids[J]. Chem Eur J, 2006, 12(15): 4021-4026. doi: 10.1002/(ISSN)1521-3765
    [14] REN J, WU L B, LI B G. Preparation and CO2 sorption/desorption of N-(3-aminopropyl) aminoethyl tributylphosphonium amino acid salt ionic liquids supported into porous silica particles[J]. Ind Eng Chem Res, 2012, 51(23): 7901-7909. doi: 10.1021/ie2028415
    [15] 陈义峰, 王昌松, 丁键, 杨祝红, 陆小华.负载离子液体吸收CO2的性能[J].化工学报, 2014, 65(5): 1716-1720. http://www.cqvip.com/QK/90316X/201405/49538424.html

    CHEN Yi-feng, WANG Chang-song, DING Jian, YANG Zhu-hong, LU Xiao-hua. CO2 absorption properties of supported [J]. CIESC J, 2014, 65(5): 1716-1720. http://www.cqvip.com/QK/90316X/201405/49538424.html
    [16] 杨娜, 王睿.固载氨基化离子液体的制备及其对CO2的吸附性能[J].化工学报, 2013, 64(S1): 128-132. http://www.oalib.com/paper/4206604

    YANG Na, WANG Rui. Preparation of supported amino-ionic liquid and its CO2 adsorption capacity[J]. CIESC J, 2013, 64(S1): 128-132. http://www.oalib.com/paper/4206604
    [17] XU X C, SONG C S, ANDRESEN J M, MILLER B G, SCARONI A W. Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture[J]. Energy Fuels, 2002, 16(6): 1463-1469. doi: 10.1021/ef020058u
    [18] 刘之琳, 滕阳, 张锴, 曹晏, 潘伟平.不同有机胺修饰MCM-41的CO2吸附性能和热稳定性[J].燃料化学学报, 2013, 41(4): 469-475. doi: 10.1016/S1872-5813(13)60025-0

    LIU Zhi-lin, TENG Yang, ZHANG Kai, CAO Yan, PAN Wei-ping. CO2 adsorption properties and thermal stability of different amine-impregnated MCM-41 materials[J]. J Fuel Chem Technol, 2013, 41(4): 469-475. doi: 10.1016/S1872-5813(13)60025-0
    [19] 陈琳琳, 王霞, 郭庆杰.四乙烯五胺修饰介孔硅胶吸附CO2性能的研究[J].燃料化学学报, 2015, 43(1): 108-115. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18563.shtml

    CHEN Lin-lin, WANG Xia, GUO Qing-jie. Study on CO2 adsorption properties of tetraethylenepentamine modified mesoporous silica gel[J]. J Fuel Chem Technol, 2015, 43(1): 108-115. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18563.shtml
    [20] JIANG Y Y, WANG G N, ZHOU Z, WU Y T, GENG J, ZHANG Z B. Tetraalkylammonium amino acids as functionalized ionic liquids of low viscosity[J]. Chem Commun, 2008, 4(4): 505-507. https://www.researchgate.net/publication/5663248_Tetraalkylammonium_amino_acids_as_functionalized_ionic_liquids_of_low_viscosity
    [21] ZHANG Y Q, ZHANG S J, LU X M, ZHOU Q, FAN W, ZHANG X P. Dual amino-functionalised phosphonium ionic liquids for CO2 capture[J]. Chem-Eur J, 2009, 15(12): 3003-3011. doi: 10.1002/chem.v15:12
    [22] ZHANG F, FANG C G, WU Y T, WANG Y T, LI A M, ZHANG Z B. Absorption of CO2 in the aqueous solutions of functionalized ionic liquids and MDEA[J]. Chem Eng J, 2010, 160(2): 691-697. doi: 10.1016/j.cej.2010.04.013
    [23] HO N L, PORCHERON F, PELLENQ J M. Experimental and molecular simulation investigation of enhanced CO2 solubility in hybrid adsorbents[J]. Langmuir, 2010, 26(16): 13287-13296. doi: 10.1021/la1015934
    [24] GRAY M L, HOFFMAN J S, HREHA D C, FAUTH D J, HEDGES S W, CHAMPAGNE K J, PENNLINE H W. Parametric study of solid amine sorbents for the capture of carbon dioxide[J]. Energy Fuels, 2009, 23(10): 4840-4844. doi: 10.1021/ef9001204
    [25] LEE J S, HILLESHEIM P C, HUANG D, LIVELY R P, OH K H, DAI S, KOROS W J. Hollow fiber-supported designer ionic liquid sponges for post-combustion CO2 scrubbing[J]. Polymer, 2012, 53(25): 5806-5815. doi: 10.1016/j.polymer.2012.10.017
    [26] 张华丽, 严春杰, 周红, 陈洁瑜, 潘志权.离子液体改性海泡石及其对二氧化碳的吸附[J].非金属矿, 2014, 37(2): 75-78. http://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201402025.htm

    ZHANG Hua-li, YAN Chun-jie, ZHOU Hong, CHEN Jie-yu, PAN Zhi-quan. Study on CO2 adsorption of sepiolite modified by ionic-liquid[J]. Non-Met Mines, 2014, 37(2): 75-78. http://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201402025.htm
    [27] WANG X, AKHMEDOV N G, DUAN Y, LUEBKE D, HOPKINSON D, LI B. Amino acid functionalized ionic liquid solid sorbents for post-combustion carbon capture[J]. ACS Appl Mater Interfaces, 2013, 5(17): 8670-8677. doi: 10.1021/am402306s
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  23
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-24
  • 修回日期:  2015-09-29
  • 网络出版日期:  2022-03-23
  • 刊出日期:  2016-01-01

目录

    /

    返回文章
    返回