留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铈改性Ru/HAP催化果糖一步法制备2, 5-呋喃二甲酸

杨阳佳子 周峰 马会霞 李学雷 苑兴洲 梁飞雪 张健

杨阳佳子, 周峰, 马会霞, 李学雷, 苑兴洲, 梁飞雪, 张健. 铈改性Ru/HAP催化果糖一步法制备2, 5-呋喃二甲酸[J]. 燃料化学学报(中英文), 2020, 48(8): 942-948.
引用本文: 杨阳佳子, 周峰, 马会霞, 李学雷, 苑兴洲, 梁飞雪, 张健. 铈改性Ru/HAP催化果糖一步法制备2, 5-呋喃二甲酸[J]. 燃料化学学报(中英文), 2020, 48(8): 942-948.
YANGYANG Jia-zi, ZHOU Feng, MA Hui-xia, LI Xue-lei, YUAN Xing-zhou, LIANG Fei-xue, ZHANG Jian. One step synthesis of 2, 5-furandicarboxylic acid from fructose catalyzed by Ce modified Ru/HAP[J]. Journal of Fuel Chemistry and Technology, 2020, 48(8): 942-948.
Citation: YANGYANG Jia-zi, ZHOU Feng, MA Hui-xia, LI Xue-lei, YUAN Xing-zhou, LIANG Fei-xue, ZHANG Jian. One step synthesis of 2, 5-furandicarboxylic acid from fructose catalyzed by Ce modified Ru/HAP[J]. Journal of Fuel Chemistry and Technology, 2020, 48(8): 942-948.

铈改性Ru/HAP催化果糖一步法制备2, 5-呋喃二甲酸

详细信息
    通讯作者:

    ZHANG Jian, E-mail: zhangjian-lnpu@163.com

  • 中图分类号: TK6

One step synthesis of 2, 5-furandicarboxylic acid from fructose catalyzed by Ce modified Ru/HAP

  • 摘要: 采用浸渍法制备稀土元素铈(Ce)改性的Ru/HAP催化剂Ce-Ru/HAP,以实现果糖一步法制备2,5-呋喃二甲酸(2,5-FDCA)。采用XRD、TEM、NH3-TPD和XPS表征手段对催化剂的理化性质进行分析。结果表明,Ce很好地高度分散到载体HAP上,且并未对HAP的结构造成影响;Ce主要以Ce3+和Ce4+形式存在,前者的存在使催化剂表面产生大量氧空穴,同时两者之间的电子转移有利于氧空穴形成,提高储氧能力,提高催化剂的表面催化活性;催化剂具有丰富的弱酸位,能够抑制反应过程中副反应的发生。优化反应条件后,催化剂Ce(8%,质量分数)-Ru/HAP在温度160℃和氧气压力2 MPa的反应条件下,反应4 h时2,5-呋喃二甲酸的产率为34.2%。因此,Ce的引入能够提高传统贵金属复合型催化剂的催化活性,同时也为果糖一步制备2,5-FDCA提供新思路。
  • 图  1  Ce负载量对2, 5-FDCA产率的影响

    Figure  1  Influence of Ce loading on the yield of 2, 5-FDCA

    图  2  反应温度对2, 5-FDCA产率的影响

    Figure  2  Influence of reaction temperature on 2, 5-FDCA yield

    图  3  反应时间对2, 5-FDCA产率的影响

    Figure  3  Influence of reaction time on 2, 5-FDCA yield

    图  4  氧气压力对2, 5-FDCA产率的影响

    Figure  4  Influence of oxygen pressure on the yield of 2, 5-FDCA

    图  5  不同含量Ce-Ru/HAP的XRD谱图

    Figure  5  XRD patterns of Ce-Ru/HAP with different contents

    a: 0%Ce-Ru/HAP; b: 2%Ce-Ru/HAP; c: 4%Ce-Ru/HAP; d: 6%Ce-Ru/HAP; e: 8%Ce-Ru/HAP; f: 10%Ce-Ru/HAP

    图  6  Ce-Ru/HAP催化剂的TEM照片

    Figure  6  TEM images of Ce-Ru/HAP catalyst

    图  7  催化剂Ce-Ru/HAP的XPS谱图

    Figure  7  XPS spectra of Ce-Ru/HAP catalyst

    (a): spectrum of Ce-Ru/HAP; (b): spectrum of 0%Ce-Ru/HAP Ru 3d; (c): spectrum of 8%Ce-Ru/HAP Ru 3d; (d): spectrum of 8%Ce-Ru/HAP Ce 3d

    图  8  Ru/HAP和8%Ce-Ru/HAP的NH3-TPD谱图

    Figure  8  NH3-TPD profiles of Ru/HAP and 8%Ce-Ru/HAP

    表  1  催化剂的比表面积

    Table  1  Surface area of catalysts

    Catalyst Surface area A/(m2·g-1)
    0%Ce-Ru/HAP 163.7
    2%Ce-Ru/HAP 166.8
    4%Ce-Ru/HAP 168.4
    6%Ce-Ru/HAP 170.3
    8%Ce-Ru/HAP 172.1
    10%Ce-Ru/HAP 169.0
    下载: 导出CSV
  • [1] SHEN G F, ZHANG S C, LEI Y, SHI J Q, XIA Y, MEI F M, CHEN Z Q, YIN G C. Catalytic carbonylation of renewable furfural derived 5-bromofurfural to 5-formyl-2-furancarboxylic acid in oil/aqueous bi-phase system[J]. Mol Catal, 2019, 463:94-98. doi: 10.1016/j.mcat.2018.11.021
    [2] ROMEN Y, CHHEDA A, DUMESIC J. Phase modifiers promote efficient production of Hydroxymethylfurfural from fructose[J]. Sci, 2006, 312(5782):1933-1937. doi: 10.1126/science.1126337
    [3] 王建刚, 张云云, 王勇, 朱丽伟, 崔洪友, 易维明.分级有序多孔磺化碳催化果糖转化制5-羟甲基糠醛[J].燃料化学学报, 2016, 44(11):1341-1348. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201611010

    WANG Jian-gang, ZHANG Yun-yun, WANG Yong, ZHU Li-wei, CUI Hong-you, YI Wei-ming. Graded ordered porous sulfonated carbon catalyzed conversion of fructose to 5-hydroxymethylfurfural[J]. J Fuel Chem Technol, 2016, 44(11):1341-1348. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201611010
    [4] 朱丽伟, 王建刚, 赵萍萍, 宋峰, 孙秀玉, 王丽红, 崔洪友, 易维明. Nb-P/SBA-15催化剂的制备及其对果糖水解制5-羟甲基糠醛的催化性能[J].燃料化学学报, 2017, 45(6):651-659. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201706002

    ZHU Li-wei, WANG Jian-gang, ZHAO Ping-ping, SONG Feng, SUN Xiu-yu, WANG Li-hong, CUI Hong-you, YI Wei-ming. Preparation of the Nb-P/SBA-15 catalyst and its performance in the dehydration of fructose to 5-hydroxyme thylfurfural[J]. J Fuel Chem Technol, 2017, 45(6):651-659. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201706002
    [5] BESSON M, PIERRE G, CATHERINE P. Conversion of biomass into chemicals over metal catalysts[J]. Chem Rev, 2014, 114:1827-1870. doi: 10.1021/cr4002269
    [6] DESSBESELL L, SOUZANCHI S, VENKATESWARA R, SADRA S. Production of 2, 5-furandicarboxylic acid (FDCA) from starch, glucose, or high-fructose corn syrup:Techno-economic analysis[J]. Biofuels Bioprod Bior, 2019, 4(1):1-12. http://cn.bing.com/academic/profile?id=b5de5ffc6b4a2519b82993d623ff34dc&encoded=0&v=paper_preview&mkt=zh-cn
    [7] MONICA G, GANDINA A, SILVESTRE A, BRUNO R. Synthesis and characterization of poly (2, 5-furan dicarboxylates) based on a variety of diols[J]. J Polym Sci Poly Chem, 2011, 49(17):3759-3768. doi: 10.1002/pola.24812
    [8] KNOOP R, VOGELZANG W, HAVEREN J, VAN E, DAAN S. High molecular weight poly(ethylene-2, 5-furanoate); critical aspects in synthesis and mechanical property determination[J]. J Polym Sci Poly Chem, 2013, 51(19):4191-4199. doi: 10.1002/pola.26833
    [9] AMARASEKARA A, GREEN D, WILLIAMS L. Renewable resources based polymers:Synthesis and characterization of 2, 5-diformylfuran-urea resin[J]. Eur Polym J, 2009, 45(2):595-598. doi: 10.1016/j.eurpolymj.2008.11.012
    [10] GAO L, DENG K, ZHENG J, LIU B, ZHANG Z. Efficient oxidation of biomass derived 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid catalyzed by merrifield resin supported cobalt porphyrin[J]. Chem Eng J, 2015, 270:444-449. doi: 10.1016/j.cej.2015.02.068
    [11] 陈光宇, 吴林波, 李伯耿. HMF路线合成生物基单体2, 5-呋喃二甲酸的研究进展[J].化工进展, 2018, 37(8):3146-3154. http://www.cqvip.com/QK/95836X/20188/675714108.html

    CHEN Guang-yu, WU Lin-bo, LI Bo-geng. Research progress of synthesis of 2, 5-furandicarboxylic acid based on HMF route[J]. Chem Ind Eng Prog, 2018, 37(8):3146-3154. http://www.cqvip.com/QK/95836X/20188/675714108.html
    [12] YAN D X, WANG G Y, GAO K, LU X M, XIN J Y, ZHANG S J. One-Pot synthesis of 2, 5-Furandicarboxylic acid from fructose in ionic liquids[J]. Ind Eng Chem Res, 2018, 57(6):1851-1858. doi: 10.1021/acs.iecr.7b04947
    [13] LI C Z, CAI H L, ZHANG B, LI W Z, PEI G X, DAI T, WANG A Q, ZHANG T. Tailored one-pot production of furan-based fuels from fructose in an ionic liquid biphasic solvent system[J]. Chin J Catal, 2015, 47(2):135-146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb201509026
    [14] CHIDAMBARAM M, BELL A. A two-step approach for the catalytic conversion of glucose to 2, 5-dimethylfuran in ionic liquids[J]. Green Chem, 2010, 12(7):1253-1262. doi: 10.1039/c004343e
    [15] YI G S, TESONG S, LI X K, ZHANG Y G. Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2, 5-Furandicarboxylic acid[J]. ChemSusChem, 2015, 7(8):2131-2135. http://cn.bing.com/academic/profile?id=49c594319ac865ba2336e8a987a7d8f3&encoded=0&v=paper_preview&mkt=zh-cn
    [16] HAN X W, GENG L, GUO Y, JIA R, LIU X H, ZHANG Y G, WANG Y Q. Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over a Pt/C-O-Mg catalyst[J]. Green Chem, 2016, 18(6):1597-1604. doi: 10.1039/C5GC02114F
    [17] PASINI T, PICCININI M, BIOSI M, BONELLI R, ALBONETTI S, DIMITRATOS N, LOPEZSANCHEZ J. Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold-copper nanoparticles[J]. Green Chem, 2011, 13(8):2091-2099. doi: 10.1039/c1gc15355b
    [18] GUPTA N, NISHIMURA S, TAKAGATI A, EBITANI K. Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid under atmospheric oxygen pressure[J]. Green Chem, 2011, 13(4):824-827. http://cn.bing.com/academic/profile?id=6d1b4a943a6188ad430b836d50a7344b&encoded=0&v=paper_preview&mkt=zh-cn
    [19] YI G S, ZHANG Y, TEONG S. Base-free conversion of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over a Ru/C catalyst[J]. Green Chem, 2016, 18:977-983. http://cn.bing.com/academic/profile?id=7ead9f2adc7e75c89c7440327cdd36a0&encoded=0&v=paper_preview&mkt=zh-cn
    [20] AN J H, WANG Y H, XIN Z, ZHANG Z X, ZHANG J, MARTIN G, RAFAL E, DUNIN-BORKOWSKI R E, WANG F. Linear-regioselective hydromethoxycarbonylation of styrene using Ru-clusters/CeO2 catalyst[J]. Chin J Catal, 2020, 41(06):963-971. doi: 10.1016/S1872-2067(19)63527-8
    [21] GAO T, CHEN J, FANG W, CAO Q, DUMEIGNIL F. Ru/Mn Ce1O catalysts with enhanced oxygen mobility and strong metal-support interaction:Exceptional performances in 5-hydroxymethylfurfural base-free aerobic oxidation[J]. J Catal, 2018, 368:53-68. doi: 10.1016/j.jcat.2018.09.034
    [22] YAN D X, XIN J Y, SHI C Y, LU X M, NI L L, WANG G Y, ZHANG S J. Base-free conversion of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid in ionic liquids[J]. Chem Eng J, 2017, 323:473-482. doi: 10.1016/j.cej.2017.04.021
    [23] WANG S G, ZHANG Z H, LIU B, LI J L. Environmentally friendly oxidation of biomass derived 5-hydroxymethylfurfural into 2, 5-diformylfuran catalyzed by magnetic separation of ruthenium catalyst[J]. Ind Eng Chem Res, 2014, 53(14):5820-5827. doi: 10.1021/ie500156d
    [24] GOSWAMI S, MARIE D, RAGHAVAN V. Microwave assisted synthesis of 5-Hydroxymethylfurfural from starch in AlCl3.6H2O/DMSO/[BMIM]Cl system[J]. J Ind Eng Chem, 2016, 55(16):4473-4481. doi: 10.1021/acs.iecr.6b00201
    [25] CASANOVA, ONOFRE, IBORRA S, CORMA A. Biomass into chemicals:Aerobic oxidation of 5-Hydroxymethyl-2-furfural into 2, 5-Furandicarboxylic acid with gold nanoparticle catalysts[J]. ChemSusChem, 2009, 2(12):1138-1144. doi: 10.1002/cssc.200900137
    [26] VUYYURU K, STRASSER P. Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis[J]. Catal Today, 2012, 195(1):144-154. doi: 10.1016/j.cattod.2012.05.008
    [27] YANG S X, ZHU W P, WANG J B, CHEN Z X. Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor[J]. J Hazard Mater, 2008, 153(3):1248-1253. doi: 10.1016/j.jhazmat.2007.09.084
    [28] FEI Z Y, YANG Y R, WANG M B, TAO Z L, LIU Q, CHEN X, CUI M, ZHANG Z X, TANG J H, QIAO X. Precisely fabricating Ce-O-Ti structure to enhance performance of Ce-Ti based catalysts for selective catalytic reduction of NO with NH3[J]. Chem Eng J, 2018, 353:930-939. doi: 10.1016/j.cej.2018.07.198
    [29] SU Y, TANG Z C, HAN W L, ZHANG P, SONG Y, LU G X. Influence of the pore structure of CeO2 supports on the surface texture and catalytic activity for CO oxidation[J]. Crystengcomm, 2014, 16(24):5189-5197. doi: 10.1039/c4ce00182f
    [30] HAN X, LI C Q, LIU X H, XIA Q, WANG Y Q. Selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over MnOx-CeO2 composite catalysts[J]. Green Chem, 2017, 19(4):996-1004. doi: 10.1039/C6GC03304K
    [31] TORRENTE L, GILBANK A, PUERTOLAS B, GARCIA T, SOLSONA B, CHADWICK D. Shape-dependency activity of nanostructured CeO in the total oxidation of polycyclic aromatic hydrocarbons[J]. Appl Catal B:Environ, 2013, 132-133(15):116-122. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0d8e8fea382671ff2015dbeea5ac6f23
    [32] NISHIUMI M, MIURA H, WADA K, HOSOKAWA S. Active ruthenium catalysts based on phosphine-modified Ru/CeO2for the selective addition of carboxylic acids to terminal alkynes[J]. ACS Catal, 2012, 2(8):1753-1759. doi: 10.1021/cs300151x
    [33] MA Z X, YANG H S, LI Q, ZHENG Z W, ZHANG X B. Catalytic reduction of NO by NH3 over Fe-Cu-OX/CNTs-TiO2 composites at low temperature[J]. Appl Catal A:Gen, 2012, 427-428:43-48. doi: 10.1016/j.apcata.2012.03.028
    [34] TIAN W, YANG H S, FAN X Y, ZHANG X B. Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature[J]. J Hazard Mater, 2011, 188(1/3):105-109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/AMM.295-298.364
    [35] ZHANG Y, WANG J J, LI X C, LIU X H, XIA Y J, HU B C, LU G Z. Direct conversion of biomass-derived carbohydrates to 5-hydroxymethylfurural over water-tolerant niobium-based catalysts[J]. Fuel, 2015, 139(1):301-307. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6f5d215e9b119bec4e4bb427339317f1
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  185
  • HTML全文浏览量:  31
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-09
  • 修回日期:  2020-07-21
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-08-10

目录

    /

    返回文章
    返回