留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于密度泛函理论的燃煤飞灰未燃尽碳与烟气砷作用机理

凌杨 吴江

凌杨, 吴江. 基于密度泛函理论的燃煤飞灰未燃尽碳与烟气砷作用机理[J]. 燃料化学学报(中英文), 2020, 48(11): 1365-1377.
引用本文: 凌杨, 吴江. 基于密度泛函理论的燃煤飞灰未燃尽碳与烟气砷作用机理[J]. 燃料化学学报(中英文), 2020, 48(11): 1365-1377.
LING Yang, WU Jiang. Interaction mechanism between unburned carbon in coal-fired fly ash and arsenic in flue gas based on the density functional theory[J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1365-1377.
Citation: LING Yang, WU Jiang. Interaction mechanism between unburned carbon in coal-fired fly ash and arsenic in flue gas based on the density functional theory[J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1365-1377.

基于密度泛函理论的燃煤飞灰未燃尽碳与烟气砷作用机理

基金项目: 

国家重点研发计划 2018YFB0605103

国家自然科学基金 52076126

上海市自然科学基金 18ZR1416200

详细信息
  • 中图分类号: X511

Interaction mechanism between unburned carbon in coal-fired fly ash and arsenic in flue gas based on the density functional theory

Funds: 

National Key Research and Development Program 2018YFB0605103

National Natural Science Foundation of China 52076126

Natural Science Foundation of Shanghai 18ZR1416200

More Information
  • 摘要: 基于密度泛函理论研究了燃煤飞灰中未燃尽碳(unburned carbon,UBC)组分对气态单质砷As及其氧化物AsO、AsO2和As2O3的作用机理。结果表明,单质砷优先吸附于碳桥位,吸附能在(-5.95)-(-5.88)eV。AsO分子中的砷、氧原子分别与碳原子成键时,吸附构型最稳定,吸附能最低为-7.87 eV。当AsO2在未燃尽碳表面解离形成一个AsO和表面活性氧时,体系最稳定,吸附能为-10.65 eV。当三角双锥As2O3分子以两个氧原子首先碰撞未燃尽碳表面时,将解离形成AsO和AsO2小分子,并分别与表面碳成键,此时体系吸附能相较于未解离情形而言显著降低,达到-10.64 eV。飞灰未燃尽碳与AsO或AsO2小分子的结合较紧密,局部倾向于形成特殊的五元环结构。毒性最强的三价态砷As2O3,相较于As、AsO和AsO2而言,化学性质稳定,不易发生吸附。将其催化裂解为AsO、AsO2小分子,有望成为可行的燃煤电厂烟气砷污染控制措施。
  • 图  1  未燃尽碳模型示意图

    Figure  1  Schematic diagram of the unburned carbon model

    (the gray balls denote carbon, the white balls denote hydrogen, and the same below)

    图  2  气态单质砷及其氧化物结构示意图

    Figure  2  Schematic diagram of gaseous arsenic and its oxides

    (the purple balls denote arsenic, the red balls denote oxygen, and the same below)

    图  3  气态单质砷吸附于未燃尽碳的初始构型

    Figure  3  Initial configuration of gaseous elemental arsenic adsorbed on the unburned carbon

    图  4  气态单质砷吸附于未燃尽碳的最终构型

    Figure  4  Final configuration of gaseous elemental arsenic adsorbed on the unburned carbon

    图  5  气态AsO分子吸附于未燃尽碳的初始构型

    Figure  5  Initial configuration of gaseous AsO molecule adsorbed on the unburned carbon

    图  6  气态AsO分子吸附于未燃尽碳的最终构型

    Figure  6  Final configuration of gaseous AsO molecule adsorbed on the unburned carbon

    图  7  气态AsO2分子吸附于未燃尽碳的初始构型

    Figure  7  Initial configuration of gaseous AsO2 molecule adsorbed on the unburned carbon

    图  8  气态AsO2分子吸附于未燃尽碳的最终构型

    Figure  8  Final configuration of gaseous AsO2 molecule adsorbed on the unburned carbon

    图  9  气态As2O3分子吸附于未燃尽碳的初始构型

    Figure  9  Initial configuration of gaseous As2O3 molecule adsorbed on the unburned carbon

    图  10  气态As2O3分子吸附于未燃尽碳的最终构型

    Figure  10  Final configuration of gaseous As2O3 molecule adsorbed on the unburned carbon

    图  11  气态AsO分子与洁净未燃尽碳的态密度

    Figure  11  Density of states for gaseous AsO molecule and a clean unburned carbon

    图  12  吸附态AsO与吸附后未燃尽碳的态密度

    Figure  12  Density of states for the adsorbed AsO and the unburned carbon after adsorption

    图  13  气态AsO分子吸附于未燃尽碳的前沿分子轨道

    Figure  13  Frontier molecular orbital of gaseous AsO molecule adsorbed on the unburned carbon

    表  1  气态砷氧化物分子的键长或原子间距

    Table  1  Bond length or interatomic distance of thegaseous arsenic oxide molecules

    SpeciesBond length or interatomic distance /nm
    AsOAs-O
    0.1667
    AsO2As-O(1)As-O(2)
    0.16800.1680
    As2O3As(1)-As(2)As(1)-O(1)As(1)-O(2)As(1)-O(3)As(2)-O(1)As(2)-O(2)As(2)-O(3)
    0.24520.18970.18940.18970.18950.19000.1896
    下载: 导出CSV

    表  2  气态砷氧化物分子的Mulliken电荷分布

    Table  2  Mulliken atomic charges of thegaseous arsenic oxide molecules

    SpeciesMulliken atomic charges /e
    As or As(1)O or O(1)O(2)O(3)As(2)
    AsO0.493-0.493
    AsO20.906-0.453-0.453
    As2O30.822-0.548-0.548-0.5480.822
    下载: 导出CSV

    表  3  几何优化结果与相应吸附能

    Table  3  Geometric optimization results and the corresponding adsorption energy

    SpeciesInitial configurationFinal configurationAdsorption energy E/eV
    Asmodel B1-5.95
    Ⅱ and Ⅲmodel B2-5.88
    AsOmodel C1-4.17
    Ⅱ and Ⅲmodel C2-4.10
    Ⅳ, Ⅴ, Ⅵ and Ⅶmodel D1-7.64
    Ⅷ and Ⅸmodel D2-7.87
    model D3-7.80
    AsO2Ⅰ and Ⅱmodel E1-6.36
    model E2-6.08
    model F-3.98
    model G-3.24
    model H-10.65
    model I-7.25
    As2O3model J1-3.60
    model J2-3.59
    model K-0.83
    model L-3.59
    model M-10.64
    model N-5.37
    下载: 导出CSV

    表  4  不同吸附构型下未燃尽碳表面键长

    Table  4  Bond length of unburned carbon surface under different adsorption configuration

    ModelBond length /nm
    C(1)-C(2)C(2)-C(3)C(3)-C(4)C(4)-C(5)C(5)-C(6)C(6)-C(7)C(7)-C(8)C(8)-C(9)
    A0.13670.14000.13860.13840.13950.13860.13980.1371
    B10.13890.14000.14270.14270.13780.13980.13960.1372
    B20.13750.13950.14160.14110.14110.14160.13950.1375
    C10.13810.13920.14400.14250.13710.13990.13950.1372
    C20.13770.13900.14130.14240.13950.14040.13940.1373
    D10.14250.14250.13980.14380.13720.13960.13980.1369
    D20.13780.13850.14440.14200.13990.14340.13870.1376
    D30.13690.13960.13980.13690.14480.14200.14070.1411
    E10.13740.13890.14260.13940.14230.14380.13810.1380
    E20.13660.13990.13950.13740.14320.13930.14280.1421
    F0.13730.13960.14190.14200.13860.13940.13980.1370
    G0.13740.13960.14110.13940.13950.14110.13960.1373
    H0.14120.14080.14070.14020.14520.14710.13810.1381
    I0.13750.13950.14310.14280.14280.14300.13960.1375
    J10.13870.14050.13990.14090.13840.13930.13980.1368
    J20.13740.13940.14090.14000.14000.14080.13950.1374
    K0.13770.14110.13830.13840.14120.14070.14030.1373
    L0.13700.14030.13870.13840.13960.13890.14000.1374
    M0.14010.14000.14380.14280.14170.14140.14080.1411
    N0.13710.14000.14100.14170.14170.14130.14020.1370
    下载: 导出CSV

    表  5  吸附质的键长或原子间距

    Table  5  Bond length or interatomic distance of the adsorbate

    SpeciesModelBond length or interatomic distance /nm
    As-C(2)As-C(4)As-C(6)
    AsB10.20910.1939
    B20.20090.2009
    As-C(2)As-C(4)As-C(6)As-O
    AsOC10.20580.18840.1661
    C20.19260.20120.1661
    As-C(2)As-C(4)As-C(6)As-OO-C(4)O-C(6)O-C(8)
    D10.18900.19060.1333
    D20.18780.19080.1335
    D30.18750.19050.1344
    As-C(4)As-C(6)As-C(8)As-O(1)As-O(2)O(1)-C(4)O(1)-C(6)
    AsO2E10.18390.18660.16570.1360
    E20.18480.18650.16610.1358
    F0.19160.16620.1664
    G0.21790.22010.16930.1694
    As-C(4)As-O(1)As-O(2)O(1)-C(2)O(1)-C(4)O(2)-C(6)
    H0.18800.19800.26630.13400.1260
    I0.18880.18900.13340.1334
    As(2)-C(2)As(2)-C(4)As(2)-C(6)
    As2O3J10.20450.2003
    J20.20230.2019
    O(1)-C(4)O(1)-C(6)
    K0.2238
    L0.28040.2947
    As(1)-C(2)As(2)-C(6)As(1)-O(1)As(1)-O(3)As(2)-O(1)As(2)-O(2)O(1)-C(4)O(2)-C(8)
    M0.20340.18910.22050.16800.29000.19320.12980.1345
    As(1)-C(4)As(2)-C(6)As(1)-As(2)As(1)-O(1)As(1)-O(2)As(1)-O(3)As(2)-O(1)As(2)-O(3)O(1)-O(2)
    N0.19450.19890.26790.18450.16440.18430.18980.18960.2510
    下载: 导出CSV

    表  6  不同吸附构型的Mulliken电荷分布

    Table  6  Mulliken atomic charges of different adsorption configuration

    ModelMulliken atomic charges /e
    C(1)C(2)C(3)C(4)C(5)C(6)C(7)C(8)C(9)As or As(1)O or O(1)O(2)O(3)As(2)
    A-0.2080.0010.021-0.0460.011-0.0460.024-0.001-0.208
    B1-0.333-0.0530.209-0.095-0.078-0.016-0.0330.023-0.2730.132
    B2-0.2740.001-0.070-0.0840.196-0.083-0.0710.001-0.2740.115
    C1-0.329-0.0230.187-0.086-0.067-0.041-0.0290.023-0.2720.592-0.467
    C2-0.270-0.020-0.050-0.0780.175-0.062-0.054-0.019-0.2700.590-0.462
    D1-0.275-0.1410.0700.336-0.070-0.028-0.0430.002-0.2780.339-0.473
    D2-0.283-0.016-0.001-0.1770.0600.326-0.0440.023-0.2760.345-0.487
    D3-0.2750.022-0.036-0.033-0.019-0.1790.0840.342-0.2960.359-0.496
    E1-0.2750.017-0.0360.2970.055-0.1570.002-0.027-0.2800.813-0.487-0.462
    E2-0.2730.028-0.028-0.009-0.0510.2950.063-0.127-0.2860.800-0.482-0.468
    F-0.2850.0620.026-0.1810.0060.051-0.0450.048-0.2730.943-0.507-0.504
    G-0.2720.069-0.086-0.0500.138-0.051-0.0880.070-0.2720.806-0.507-0.504
    H-0.2940.3340.073-0.169-0.0230.289-0.0730.025-0.2710.445-0.500-0.431
    I-0.2760.021-0.0400.333-0.1040.334-0.0400.021-0.2750.495-0.498-0.498
    J1-0.319-0.0820.160-0.104-0.0750.002-0.0320.039-0.2710.708-0.565-0.550-0.5561.070
    J2-0.2700.027-0.067-0.1060.148-0.103-0.0620.020-0.2700.708-0.562-0.551-0.5561.068
    K-0.277-0.053-0.0320.138-0.065-0.116-0.0490.045-0.2760.842-0.538-0.548-0.5500.858
    L-0.2740.001-0.0280.045-0.0580.010-0.0240.003-0.2740.831-0.546-0.550-0.5500.835
    M-0.267-0.1060.0420.319-0.029-0.1760.0760.341-0.2930.614-0.496-0.497-0.5610.444
    N-0.2880.0660.021-0.1570.076-0.1320.0480.000-0.2881.065-0.575-0.519-0.5750.626
    下载: 导出CSV
  • [1] WANG C, LIU H, ZHANG Y, ZOU C, ANTHONY E J. Review of arsenic behavior during coal combustion: Volatilization, transformation, emission and removal technologies[J]. Prog Energy Combust Sci, 2018, 68: 1-28. http://www.sciencedirect.com/science/article/pii/S0360128517302083
    [2] YANG W, GAP Z, LIU X, DING X, YAN W. The adsorption characteristics of As2O3, Pb0, PbO and PbCl2 on single atom iron adsorbent with graphene-based substrates[J]. Chem Eng J, 2019, 361: 304-313. http://www.sciencedirect.com/science/article/pii/S1385894718325737
    [3] 周强, 段钰锋, 卢平.燃煤电厂吸附剂喷射脱汞技术的研究进展[J].化工进展, 2018, 37(11): 4460-4467. http://www.cnki.com.cn/Article/CJFDTotal-HGJZ201811045.htm

    ZHOU Qiang, DUAN Yu-feng, LU Ping. Research progress on in-duct mercury removal by sorbent injection in power plant[J]. Chem Ind Eng Prog, 2018, 37(11): 4460-4467. http://www.cnki.com.cn/Article/CJFDTotal-HGJZ201811045.htm
    [4] SUN X, WU J, LI Q, LIU Q, QI Y, YOU L, JI Z, HE P, SHENG P, REN J, ZHANG W, LU J, ZHANG J. Fabrication of BiOIO3 with induced oxygen vacancies for efficient separation of the electron-hole pairs[J]. Appl Catal B: Environ, 2017, 218: 80-90. http://www.sciencedirect.com/science/article/pii/S0926337317305842
    [5] WANG J, ZHANG Y, WANG T, XU H, PAN W-P. Effect of modified fly ash injection on As, Se, and Pb emissions in coal-fired power plant[J]. Chem Eng J, 2020, 380: 122561. http://www.sciencedirect.com/science/article/pii/S1385894719319643
    [6] 王永兴, 黄亚继, 董璐, 袁琦, 丁守一, 程好强, 王圣, 段钰锋.掺杂铁基氧化物吸附剂燃煤烟气脱汞实验研究[J].燃料化学学报, 2020, 48(7): 785-794. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract29591.shtml

    WANG Yong-xing, HUANG Ya-ji, DONG Lu, YUAN Qi, DING Shou-yi, CHENG Hao-qiang, WANG Sheng, DUAN Yu-feng.掺杂铁基氧化物吸附剂燃煤烟气脱汞实验研究[J]. J. Fuel Chem Technol, 2020, 48(7): 785-794. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract29591.shtml
    [7] 徐明厚, 王文煜, 温昶, 于敦喜, 刘小伟.燃煤电厂细微颗粒物脱除技术研究新进展[J].中国电机工程学报, 2019, 39(22): 6627-6639. http://d.wanfangdata.com.cn/periodical/zgdjgcxb201922014

    XU Ming-hou, WANG Wen-yu, WEN Chang, YU Dun-xi, LIU Xiao-wei. Research development of precipitation technology to accomplish the ultra-low emission from coal-fired power plants[J]. Proc CSEE, 2019, 39(22): 6627-6639. http://d.wanfangdata.com.cn/periodical/zgdjgcxb201922014
    [8] SHAH P, STREZOV V, PRINCE K, NELSON P F. Speciation of As, Cr, Se and Hg under coal fired power station conditions[J]. Fuel, 2008, 87(10): 1859-1869. http://www.sciencedirect.com/science/article/pii/S0016236107005194
    [9] TIAN C, GUPTA R, ZHAO Y, ZHANG J. Release behaviors of arsenic in fine particles generated from a typical high-arsenic coal at a high temperature[J]. Energy Fuels, 2016, 30(8): 6201-6209. http://smartsearch.nstl.gov.cn/paper_detail.html?id=82bf242c2abf81c9b4c85381f4b7fe70
    [10] SHEN F, LIU J, ZHANG Z, DAI J. On-line analysis and kinetic behavior of arsenic release during coal combustion and pyrolysis[J]. Environ Sci Technol, 2015, 49(22): 13716-13723. http://europepmc.org/abstract/MED/26488499
    [11] WINTER R M, MALLEPALLI R R, HELLEM K P, SZYDLO S W. Determination of As, Cd, Cr, and Pb species formed in a combustion environment[J]. Combust Sci Technol, 1994, 101(1/6): 45-58. doi: 10.1080/00102209408951865
    [12] 闫傲, 张月, 王春波, 白涛, 赵斌. O2对燃煤烟气中As2O3均相反应生成途径影响研究[J].燃料化学学报, 2020, 48(1): 11-17. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract29501.shtml

    YAN Ao, ZHANG Yue, WANG Chun-bo, BAI Tao, ZHAO Bin. Influence of O2 on the formation of As2O3 by homogeneous reaction with As and AsO in the coal-fired flue gas[J]. J Fuel Chem Technol, 2020, 48(1): 11-17. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract29501.shtml
    [13] ZHANF H, KONG M, CAI Z, JIANG L, LIU Q, YANG J, REN S, LI J, DUAN M. Synergistic effect of arsenic and different potassium species on V2O5-WO3/TiO2 catalyst poisoning: Comparison of Cl-, SO42- and NO3- anions[J]. Catal Commun, 2020, 144: 106069. http://www.sciencedirect.com/science/article/pii/S156673672030145X
    [14] 云端, 宋蔷, 姚强. V2O5-WO3/TiO2SCR催化剂的失活机理及分析[J].煤炭转化, 2009, 32(1): 91-96. http://www.cnki.com.cn/Article/CJFDTotal-MTZH200901022.htm

    YUN Duan, SONG Qiang, YAO Qiang. Mechanism and analysis of SCR catalyst deactivation[J]. Coal Convers, 2009, 32(1): 91-96. http://www.cnki.com.cn/Article/CJFDTotal-MTZH200901022.htm
    [15] 云端, 邓斯理, 宋蔷, 姚强. V2O5-WO3/TiO2系SCR催化剂的钾中毒及再生方法[J].环境科学研究, 2009, 22(6): 730-735. http://www.cnki.com.cn/Article/CJFDTotal-HJKX200906018.htm

    YUN Duan, DENG Si-li, SONG Qiang, YAO Qiang. Potassium deactivation and regeneration method of V2O5-WO3/TiO2 SCR catalyst[J]. Res Environ Sci, 2009, 22(6): 730-735. http://www.cnki.com.cn/Article/CJFDTotal-HJKX200906018.htm
    [16] LU Q, PEI X Q, WU Y W, XU M X, LIU D J, ZHAO L. Deactivation mechanism of the commercial v2o5-moo3/tio2 selective catalytic reduction catalyst by arsenic poisoning in coal-fired power plants[J]. Energy Fuels, 2020, 34(4): 4865-4873. http://www.researchgate.net/publication/339495874_Deactivation_mechanism_of_commercial_V2O5-MoO3TiO2_SCR_catalyst_by_arsenic_poisoning_in_coal-fired_power_plants
    [17] LIU C, ZHAO Q, WANG Y, SHI P, JIANG M. Hydrothermal synthesis of calcium sulfate whisker from flue gas desulfurization gypsum[J]. Chin J Chem Eng, 2016, 24(11): 1552-1560. http://www.cqvip.com/QK/84275X/201611/670899109.html
    [18] YANG P, LI X, TONG Z J, LI Q S, HE B Y, WANG L L, GUO S H, XU Z M. Use of flue gas desulfurization gypsum for leaching Cd and Pb in reclaimed tidal flat soil[J]. Environ Sci Pollut Res Int, 2016, 23(8): 7840-7848. http://www.ncbi.nlm.nih.gov/pubmed/26758303
    [19] CAO Z, CAO Y D, ZHANG J S, SUN C B, LI X L. Preparation and characterization of high-strength calcium silicate boards from coal-fired industrial solid wastes[J]. Int J Min Met Mater, 2015, 22(8): 892-900. http://qikan.cqvip.com/Qikan/Article/Detail?id=66747589504849534856484952
    [20] LIU Z, HAO Y, ZHANG J, WU S, PAN Y, ZHOU J, QIAN G. The characteristics of arsenic in Chinese coal-fired power plant flue gas desulphurisation gypsum[J]. Fuel, 2020, 271: 117515. http://www.sciencedirect.com/science/article/pii/S001623612030510X
    [21] HE X, YAO B, XIA Y, HUANG H, GAN Y, ZHANG W. Coal fly ash derived zeolite for highly efficient removal of Ni2+ inwaste water[J]. Powder Technol, 2020, 367: 40-46. http://www.sciencedirect.com/science/article/pii/S0032591019309969
    [22] LI Y, DANG L, YANG H, LI J, HU H. Removal of elemental mercury in flue gas by Cu-Fe modified magnetosphere from coal combustion fly ash[J]. Fuel, 2020, 271: 117668. http://www.sciencedirect.com/science/article/pii/S0016236120306633
    [23] 陈明明, 段钰锋, 李佳辰, 周强, 柳帅, 刘猛.溴素改性ESP飞灰脱汞机理的实验研究[J].中国电机工程学报, 2017, 37(11): 3207-3215. http://www.cnki.com.cn/Article/CJFDTotal-ZGDC201711016.htm

    CHEN Ming-ming, DUAN Yu-feng, LI Jia-chen, ZHOU Qiang, LIU Shuai, LIU Meng. Experimental study of mercury removal mechanism by bromine-modified fly ash[J]. Proc CSEE, 2017, 37(11): 3207-3215. http://www.cnki.com.cn/Article/CJFDTotal-ZGDC201711016.htm
    [24] LI S, GONG H, HU H, LIU H, HUANG Y, FU B, WANG L, YAO H. Re-using of coal-fired fly ash for arsenic vapors in-situ retention before SCR catalyst: Experiments and mechanisms[J]. Chemosphere, 2020, 254: 126700. http://www.sciencedirect.com/science/article/pii/S0045653520308936
    [25] GUEDES A, VALENTIM B, PRIETO A C, SANZ A, FLORES D, NORONHA F. Characterization of fly ash from a power plant and surroundings by micro-Raman spectroscopy[J]. Int J Coal Geol, 2008, 73(3/4): 359-370. http://www.sciencedirect.com/science/article/pii/S0166516207001206/pdf?md5=33976534a1ce4530818639b218791e3c&pid=1-s2.0-S0166516207001206-main.pdf&_valck=1
    [26] BHARDWAJ R, CHEN X, VIDIC R D. Impact of fly ash composition on mercury speciation in simulated flue gas[J]. J Air Waste Manag Assoc, 2009, 59(11): 1331-1338. https://www.researchgate.net/publication/40040250_Impact_of_Fly_Ash_Composition_on_Mercury_Speciation_in_Simulated_Flue_Gas
    [27] HOWER J C, SENIOR C L, SUUBERG E M, HURT R H, WILCOX J L, OLSON E S. Mercury capture by native fly ash carbons in coal-fired power plants[J]. Prog Energy Combust Sci, 2010, 36(4): 510-529. http://europepmc.org/abstract/med/24223466
    [28] HE P, ZHANG X, PENG X, JIANG X, WU J, CHEN N. Interaction of elemental mercury with defective carbonaceous cluster[J]. J Hazard Mater, 2015, 300: 289-297. https://www.sciencedirect.com/science/article/pii/S0304389415005464
    [29] HE P, WU J, JIANG X, PAN W, REN J. Effect of SO3 on elemental mercury adsorption on a carbonaceous surface[J]. Appl Surf Sci, 2012, 258(22): 8853-8860. https://www.sciencedirect.com/science/article/pii/S0169433212009634
    [30] QIN H, HE P, WU J, CHEN N. Theoretical study of hydrocarbon functional groups on elemental mercury adsorption on carbonaceous surface[J]. Chem Eng J, 2020, 380: 122505. https://www.sciencedirect.com/science/article/pii/S1385894719319084
    [31] ZHU B, ZHANG J, JIANG C, CHENG B, YU J. First principle investigation of halogen-doped monolayer g-C3N4 photocatalyst[J]. Appl Catal B: Environ, 2017, 207: 27-34. https://www.sciencedirect.com/science/article/pii/S0926337317301248
    [32] LIU J, QU W, JOO S W, Chuguang Zheng. Effect of SO2 on mercury binding on carbonaceous surfaces[J]. Chem Eng J, 2012, 184: 163-167. https://www.sciencedirect.com/science/article/pii/S1385894712000265
    [33] JUNGSUTTIWONG S, WONGNONGWA Y, NAMUANGRUK S, KUNGWAN N, PROMARAK V, KUNASETH M. Density functional theory study of elemental mercury adsorption on boron doped graphene surface decorated by transition metals[J]. Appl Surf Sci, 2016, 362: 140-145. https://ui.adsabs.harvard.edu/abs/2016ApSS..362..140J/abstract
    [34] LIU X, GAO Z, HUANG H, YAN G, HUANG T, CHEN C, YANG W, DING X-L. Simultaneous catalytic oxidation of nitric oxide and elemental mercury by single-atom Pd/g-C3N4 catalyst: A DFT study[J]. Mol Catal, 2020, 488: 110901. doi: 10.1021/ie501292a
    [35] LING L, FAN M, WANG B, ZHANG R. Application of computational chemistry in understanding the mechanisms of mercury removal technologies: a review[J]. Energy Environ Sci, 2015, 8(11): 3109-3133. https://www.researchgate.net/publication/280773664_Application_of_computational_chemistry_in_understanding_the_mechanisms_of_mercury_removal_technologies_A_review
    [36] 杨涛, 刘金家, 王艳丹, 温晓东, 申宝剑. CO2在Fe3O4(111)表面的吸附结构及能量研究[J].燃料化学学报, 2018, 46(9): 1113-1120. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract19279.shtml

    YANG Tao, LIU Jin-jia, WANG Yan-dan, WEN Xiao-dong, SHEN Bao-jian. Structures and energetics of CO2 adsorption on the Fe3O4 (111) surface[J]. J Fuel Chem Technol, 2018, 46(9): 1113-1120. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract19279.shtml
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  49
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-10
  • 修回日期:  2020-10-21
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-11-10

目录

    /

    返回文章
    返回