留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

调控制备pH值对铁钼催化剂结构及性能的影响

卫敏 程丽军 袁善良 薄其飞 张彪 蒋毅

卫敏, 程丽军, 袁善良, 薄其飞, 张彪, 蒋毅. 调控制备pH值对铁钼催化剂结构及性能的影响[J]. 燃料化学学报(中英文), 2019, 47(2): 209-214.
引用本文: 卫敏, 程丽军, 袁善良, 薄其飞, 张彪, 蒋毅. 调控制备pH值对铁钼催化剂结构及性能的影响[J]. 燃料化学学报(中英文), 2019, 47(2): 209-214.
WEI Min, CHENG Li-jun, YUAN Shan-liang, BO Qi-fei, ZHANG Biao, JIANG Yi. Effect of pH value on the structure and properties of iron-molybdenum catalysts during preparation[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 209-214.
Citation: WEI Min, CHENG Li-jun, YUAN Shan-liang, BO Qi-fei, ZHANG Biao, JIANG Yi. Effect of pH value on the structure and properties of iron-molybdenum catalysts during preparation[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 209-214.

调控制备pH值对铁钼催化剂结构及性能的影响

基金项目: 

四川省科技计划项目 2018GZ0314

详细信息
  • 中图分类号: TQ426

Effect of pH value on the structure and properties of iron-molybdenum catalysts during preparation

Funds: 

Sichuan Science and Technology Program 2018GZ0314

More Information
  • 摘要: 通过调控共沉淀中钼酸铵溶液的酸度制备了系列铁钼催化剂,采用N2吸附-脱附、Raman、XRD、SEM、H2-TPR等方法对催化剂的结构进行了表征,并考察了不同酸度条件下制备的铁钼催化剂的甲醇氧化制甲醛催化活性。结果表明,钼酸铵溶液酸度影响催化剂的粒径、形貌及表层铁、钼物种的分布与富集。恰当的钼酸铵溶液酸度范围,优化了催化剂表层MoO3和Fe2(MoO43物种的比例,改善了催化剂的催化氧化性能,有利于甲醇氧化制甲醛收率和选择性的提高。
  • 图  1  不同钼酸铵溶液pH值制备催化剂的活性

    Figure  1  Activities of the catalysts prepared with ammonium molybdate solutions of different pH values

    a: CH3OCH3; b: CHOOCH3; c: CO2; d: CO; e: yield; f: selectivity; g: conversion

    图  2  不同钼酸铵溶液pH值制备催化剂的拉曼光谱谱图

    Figure  2  Raman spectra of the catalysts prepared with ammonium molybdate solutions of different pH values

    a: pH=1.75; b: pH=2.77; c: pH=3.50; d: pH=5.70; e: pH=8.69

    图  3  不同钼酸铵溶液pH值制备催化剂的XRD谱图

    Figure  3  XRD patterns of the catalysts prepared with ammonium molybdate solutions of different pH values

    a: pH=1.75; b: pH=2.77; c: pH=3.50; d: pH=5.70; e: pH=8.69

    图  4  不同钼酸铵溶液的pH值制备催化剂的SEM照片

    Figure  4  SEM images of the catalysts prepared with ammonium molybdate solutions of different pH values

    (a): pH=1.75; (b): pH=2.77; (c): pH=3.50; (d): pH=5.70; (e): pH=8.69

    图  5  不同pH值钼酸铵溶液制备催化剂的H2-TPR谱图

    Figure  5  H2-TPR curves of the catalysts prepared with ammonium molybdate solutions of different pH values

    a: pH=1.75; b: pH=2.77; c: pH=3.50; d: pH=5.70; e: pH=8.69

    表  1  钼酸铵溶液pH值对催化剂孔结构的影响

    Table  1  Influence of pH value of ammonium molybdate solution on catalyst pore structure

    pH value of ammonium molybdate solution Pore volume
    v/(mL·g-1)
    Surface area
    A/(m2·g-1)
    Average pore size d/nm
    1.75 5.43 2.62 8.28
    2.77 4.19 2.45 6.84
    3.50 4.69 2.87 6.54
    5.70 12.00 8.05 5.97
    8.69 8.66 6.00 5.78
    下载: 导出CSV
  • [1] 张帅, 张一科, 呼日勒朝克图, 甄彬, 韩明汉.甲醇氧化制甲醛铁钼催化剂表面结构与活性[J].化工学报, 2016, 67(9):3678-3683. http://d.old.wanfangdata.com.cn/Periodical/hgxb201609020

    ZHANG Shuai, ZHANG Yi-ke, HU Rlckt, ZHEN Bin, HAN Ming-han. Surface structure and activity of iron molybdate catalyst for methanol oxidation to formaldehyde[J]. J Chem Ind Eng, 2016, 67(9):3678-3683. http://d.old.wanfangdata.com.cn/Periodical/hgxb201609020
    [2] RAUN K V, LUNDEGAARD L F, CHEVALLIER J, BEATO P, APPEL C C, NIELSEN K. Deactivation behavior of an iron-molybdate catalyst during selective oxidation of methanol to formaldehyde[J]. Catal Sci Technol, 2018, 8(18):4626-4637. doi: 10.1039/C8CY01109E
    [3] ANDERSSON A, HOLMBERG J, HÄGGBLAD R. Process improvements in methanol oxidation to formaldehyde:Application and catalyst development[J]. Top Catal, 2016, 59(17/18):1589-1599. doi: 10.1007/s11244-016-0680-1?view=classic
    [4] 袁浩然, 张皓, 殷惠琴, 施翔宇, 谢祥.甲醇氧化制甲醛用铁钼催化剂的研究[J].化学工业与工程技术, 2010, 31(6):10-13. doi: 10.3969/j.issn.1006-7906.2010.06.004

    YUAN Hao-ran, ZHANG Hao, YIN Hui-qin, SHI Xiang-yu, XIE Xiang. Study on iron-molybdenum catalyst for producing formaldehyde by methanol oxidation[J]. J Chem Ind Eng, 2010, 31(6):10-13. doi: 10.3969/j.issn.1006-7906.2010.06.004
    [5] BABICHEV I V, ILYIN A A, RUMIANTSEV R N, ILYIN A P, DREMIN M V. Effect of preparation conditions on the composition, structure, and properties of iron-molybdenum catalyst[J]. Russ J Appl Chem, 2016, 89(2):227-232. doi: 10.1134/S1070427216020105
    [6] BRIAND L E, HIRT A M, WACHS I E. Quantitative determination of the number of surface active sites and the turnover frequencies for methanol oxidation over metal oxide catalysts:Application to bulk metal molybdates and pure metal oxide catalysts[J]. J Catal, 2001, 202(2):268-278. https://www.sciencedirect.com/science/article/pii/S0021951701932890
    [7] HARDCASTLE F D, WACHS I E. Determination of molybdenum-oxygen bond distances and bond orders by Raman spectroscopy[J]. J Raman Spectr, 1990, 21(10):683-691. doi: 10.1002/jrs.v21:10
    [8] XU Q, JIA G, ZHANG J, FENG Z, LI C. Surface phase composition of iron molybdate catalysts studied by UV Raman spectroscopy[J]. J Phys Chem C, 2008, 112(25):9387-9393. doi: 10.1021/jp800359p
    [9] SOARES A P V, PORTELA M F, KIENNEMANN A, HILAIRE L, MILLET J M M. Iron molybdate catalysts for methanol to formaldehyde oxidation:Effects of Mo excess on catalytic behaviour[J]. Appl Catal A:Gen, 2001, 206(2):221-229. https://www.sciencedirect.com/science/article/abs/pii/S0926860X00006001
    [10] PLYASOVA L M, KLEVTSOVA R F, BORISOV S V, KEFELI L M. The crystal structure of iron molybdate[C]//Russian Academy of Sciences. Doklady Akademii Nauk, 1966, 167(1): 84-87.
    [11] SOARES A P V, PORTELA M F, KIENNEMANN A. Methanol selective oxidation to formaldehyde over iron-molybdate catalysts[J]. Catal Rev, 2005, 47(1):125-174. doi: 10.1081/CR-200049088
    [12] SOARES A P V, FARINHA PORTELA M, KIENNEMANN A, HILAIRE L, MILLET J M M. Iron molybdate catalysts for methanol to formaldehyde oxidation:Effects of Mo excess on catalytic behaviour[J]. Appl Catal A:Gen, 2001, 206(2):221-229. doi: 10.1016/S0926-860X(00)00600-1
    [13] TRIFIRÓF. The chemistry of oxidation catalysts based on mixed oxides[J]. Catal Today, 1998, 41(1):21-35. doi: 10.1016-S0920-5861(98)00035-2/
    [14] ROUTRAY K, ZHOU W, KIELY C J, GRüNERT W, WACHS I E. Origin of the synergistic interaction between MoO3 and iron molybdate for the selective oxidation of methanol to formaldehyde[J]. J Catal, 2010, 275(1):84-98. doi: 10.1016/j.jcat.2010.07.023
    [15] ZHANG H, SHEN J, GE X. The reduction behavior of Fe-Mo-O catalysts studied by temperature-programmed reduction combined with in situ mössbauer spectroscopy and X-ray diffraction[J]. J Solid State Chem, 1995, 117(1):127-135. doi: 10.1006/jssc.1995.1255
    [16] NIWA M, MIZUTANI M, TAKAHASHI M, MURAKAMI Y. Mechanism of methanol oxidation over oxide catalysts containing MoO3[J]. J Catal, 1981, 70(1):14-23. doi: 10.1016-0021-9517(81)90312-2/
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  186
  • HTML全文浏览量:  91
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-29
  • 修回日期:  2018-12-29
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-02-10

目录

    /

    返回文章
    返回