留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni/Zr-MOF催化剂的制备及其在生物质热解中的应用

尚双 郭朝强 兰奎 李泽善 秦振华 贺维韬 李建芬

尚双, 郭朝强, 兰奎, 李泽善, 秦振华, 贺维韬, 李建芬. Ni/Zr-MOF催化剂的制备及其在生物质热解中的应用[J]. 燃料化学学报(中英文), 2019, 47(9): 1067-1074.
引用本文: 尚双, 郭朝强, 兰奎, 李泽善, 秦振华, 贺维韬, 李建芬. Ni/Zr-MOF催化剂的制备及其在生物质热解中的应用[J]. 燃料化学学报(中英文), 2019, 47(9): 1067-1074.
SHANG Shuang, GUO Chao-qiang, LAN Kui, LI Ze-shan, QIN Zhen-hua, HE Wei-tao, LI Jian-fen. Preparation of Ni/Zr-MOF catalyst and its application in pyrolysis of biomass[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1067-1074.
Citation: SHANG Shuang, GUO Chao-qiang, LAN Kui, LI Ze-shan, QIN Zhen-hua, HE Wei-tao, LI Jian-fen. Preparation of Ni/Zr-MOF catalyst and its application in pyrolysis of biomass[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1067-1074.

Ni/Zr-MOF催化剂的制备及其在生物质热解中的应用

基金项目: 

湖北省技术创新重大专项 2017ABA155

湖北省中央引导地方科技发展专项 2018ZYYD062

详细信息
  • 中图分类号: O643.3

Preparation of Ni/Zr-MOF catalyst and its application in pyrolysis of biomass

Funds: 

the Technology Innovation Major Project of Hubei Province 2017ABA155

the Central Committee Guide Local Science and Technology Development Special project of Hubei Province 2018ZYYD062

More Information
  • 摘要: 通过均匀沉淀法制备了以锆-金属有机骨架化合物(Zr-metal organic framework,Zr-MOF)为载体的Ni/Zr-MOF催化剂,并用于湿污泥和秸秆混合催化热解实验。采用元素分析、X射线荧光光谱(XRF)、热重分析(TG)、X射线衍射(XRD)、扫描电镜(SEM)和N2吸附-脱附等温(BET)对载体和催化剂进行表征分析,通过一系列实验来探讨热解温度、秸秆添加量和Ni负载量对于湿污泥和秸秆混合催化热解制备富氢合成气的影响。结果表明,Zr-MOF载体颗粒均匀呈八面体,比表面积高达805.93 m2/g,平均孔径为20.14 nm,为介孔结构。Ni/Zr-MOF催化剂具有较高的热稳定性和催化活性。与不添加催化剂相比,使用Ni/Zr-MOF催化剂在500 ℃下热解,H2的产量从0.39 mol/kg显著提高到12.65 mol/kg。随着热解温度的升高,催化剂出现团聚现象,同时在反复使用之后其表面产生了少量的积炭,导致催化剂催化活性逐渐降低。因此,Ni/Zr-MOF催化剂适用于生物质低温催化热解。
  • 图  1  实验装置示意图

    Figure  1  Schematic diagram of the experimental system

    图  2  Zr-MOF载体和Ni/Zr-MOF催化剂的热重分析

    Figure  2  Thermogravimetric analysis of Zr-MOF carrier and Ni/Zr-MOF catalyst

    图  3  Ni/Zr-MOF催化剂和废Ni/Zr-MOF催化剂的XRD谱图

    Figure  3  XRD patterns of Ni/Zr-MOF catalyst and waste Ni/Zr-MOF catalyst

    图  4  Zr-MOF载体、Ni/Zr-MOF催化剂和废Ni/Zr-MOF催化剂的SEM照片

    Figure  4  SEM images of Zr-MOF, Ni/Zr-MOF catalyst and waste Ni/Zr-MOF catalyst

    图  5  Zr-MOF、Ni/Zr-MOF和废Ni/Zr-MOF的N2吸附-脱附等温线以及BJH孔径分布

    Figure  5  N2 adsorption-desorption isotherm plots and BJH cumulative pore distribution of various catalysts

    (a): Zr-MOF; (b): Ni/Zr-MOF; (c): waste Ni/Zr-MOF

    图  6  热解温度对于合成气含量的影响

    Figure  6  Influence of reactor temperature on syngas content

    图  7  秸秆添加量对于合成气含量和H2产量的影响

    Figure  7  Influence of straw content on syngas content and H2 yield

    图  8  Ni负载量对于合成气含量的影响

    Figure  8  Influence of Ni loading on syngas content

    表  1  干污泥和小麦秸秆的工业分析和元素分析

    Table  1  Proximate and ultimate analysis of dry sludge and wheat straw

    Sample Proximate analysis wad/% Ultimate analysis w/%
    M A V FC C H N S O*
    Sludge 4.15 50.69 35.33 9.83 25.20 5.62 3.82 0.15 14.52
    Wheat straw 10.88 6.91 67.11 15.10 31.04 4.22 0.40 0.06 57.37
    *: by difference
    下载: 导出CSV

    表  2  样品的元素分析和XRF分析

    Table  2  Ultimate analysis and XRF analysis of samples

    Sample Main composition and content w/%
    C H N ZrO2 NiO K2O
    Zr-MOF 33.16 3.57 3.29 58.34 - -
    Ni/Zr-MOF 0.13 - - 29.63 65.89 3.01
    Waste Ni/Zr-MOF 5.47 - - 26.73 63.89 2.54
    下载: 导出CSV

    表  3  Zr-MOF载体、Ni/Zr-MOF催化剂和废Ni/Zr-MOF催化剂的结构参数

    Table  3  Textural parameters of Zr-MOF, Ni/Zr-MOF and waste Ni/Zr-MOF

    Sample BET surface area A/(m2·g-1) Total pore volume v/(cm3·g-1) Average pore diameter d/nm
    Zr-MOF 805.93 0.47 20.14
    Ni/Zr-MOF 17.96 0.13 102.11
    Waste Ni/Zr-MOF 4.01 0.02 132.58
    下载: 导出CSV

    表  4  催化剂对于气体组成和特性的影响

    Table  4  Influence of catalyst on gas composition and gas characterization

    Catalyst No catalyst 30%Ni/Zr- MOF catalyst
    Pyrolysis temperature t/℃ 500 500
    Catalytic temperature t/℃ 500 500
    H2 content φ/% 1.94 52.48
    CO content φ/% 55.07 12.03
    CH4 content φ/% 20.03 5.74
    CO2 content φ/% 21.12 29.38
    CnHm content φ/% 1.83 0.37
    Dry gas yield /(m3·kg-1) 0.45 0.54
    H2 yield /(mol·kg-1) 0.39 12.65
    QLHV/(MJ·m-3) 15.51 9.87
    下载: 导出CSV
  • [1] SAXENA R C, ADHIKARI D K, GOYAL H B. Biomass-based energy fuel through biochemical routes:A review[J]. Renewable Sustainable Energy Rev, 2009, 13(1):167-178. doi: 10.1016/j.rser.2007.07.011
    [2] ZHAO Z Y, YAN H. Assessment of the biomass power generation industry in China[J]. Renew Energy, 2012, 37(1):53-60.
    [3] ISMAIL T M, EL-SALAM M A. Parametric studies on biomass gasification process on updraft gasifier high temperature air gasification[J]. Appl Therm Eng, 2017, 112:1460-1473. doi: 10.1016/j.applthermaleng.2016.10.026
    [4] XU X, ZHAO B, SUN M, CHEN X, ZHANG M, LI H, XU S. Co-pyrolysis characteristics of municipal sewage sludge and hazelnut shell by TG-DTG-MS and residue analysis[J]. Waste Management, 2017, 62:91-100. doi: 10.1016/j.wasman.2017.02.012
    [5] HAN J, KIM H. The reduction and control technology of tar during biomass gasification/pyrolysis:An overview[J]. Renewable Sustainable Energy Rev, 2008, 12(2):397-416. doi: 10.1016/j.rser.2006.07.015
    [6] ZHOU Y, WANG W, SUN J, FU L, SONG Z, ZHAO X, MAO Y. Microwave-induced electrical discharge of metal strips for the degradation of biomass tar[J]. Energy, 2017, 126:42-52. doi: 10.1016/j.energy.2017.03.008
    [7] 杨泽, 李挺, 王美君, 常丽萍, 任秀蓉. Ni基生物质焦油重整催化剂的研究进展[J].化工进展, 2016, 35(10):3155-3163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201610020

    YANG Ze, LI Ting, WANG Mei-jun, CHANG Li-ping, REN Xiu-rong. Research progress on Ni-based catalyst for tar reforming in biomass gasification[J]. Chem Ind Eng Prog, 2016, 35(10):3155-3163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201610020
    [8] LI J, LIU J, LIAO S, YAN R. Hydrogen-rich gas production by air-steam gasification of rice husk using supported nano-NiO/γ-Al2O3 catalyst[J]. Int J Hydrog Energy, 2010, 35(14):7399-7404. doi: 10.1016/j.ijhydene.2010.04.108
    [9] 纪婷婷, 杨晓萱, 王亚晶, 王玉和.不同方法制备的介孔Ni/MgO催化剂上水蒸气重整苯酚制氢[J].燃料化学学报, 2016, 44(9):1131-1137. doi: 10.3969/j.issn.0253-2409.2016.09.015

    JI Ting-ting, YANG Xiao-xuan, WANG Ya-jing, WANG Yu-he. Steam reforming of phenol for producing hydrogen over nickel support on MgO prepared by different methods[J]. J Fuel Chem Technol, 2016, 44(9):1131-1137. doi: 10.3969/j.issn.0253-2409.2016.09.015
    [10] SHI X W, XIN X, LIU Z, YAO L U, HONG-XIA L I, JIAN-FEN L I, CHEN Q P. Preparation and characterization of Ni/TPC catalyst and applied in straw pyrolysis gas reforming[J]. J Fuel Chem Technol, 2018, 46(6):659-665. doi: 10.1016/S1872-5813(18)30028-8
    [11] 史训旺, 李建芬, 辛馨, 李红霞, 路遥, 刘照, 程群鹏. NiO-Fe2O3/PG-γ-Al2O3催化剂的制备及其在秸秆热解中的应用[J].燃料化学学报, 2017, 45(12):1434-1440. doi: 10.3969/j.issn.0253-2409.2017.12.004

    SHI Xun-wang, LI Jian-fen, XIN Xin, LI Hong-xia, LU Yao, LIU Zhao, CHENG Qun-peng. Preparation of NiO-Fe2O3/PG-γ-Al2O3 catalysts and its application in pyrolysis of biomass straw[J]. J Fuel Chem Technol, 2017, 45(12):1434-1440. doi: 10.3969/j.issn.0253-2409.2017.12.004
    [12] REN J, LANGMI H W, NORTH B C, MATHE M, BESSARABOV D. Modulated synthesis of zirconium-metal organic framework (Zr-MOF) for hydrogen storage applications[J]. Int J Hydrog Energy, 2014, 39(2):890-895. doi: 10.1016/j.ijhydene.2013.10.087
    [13] LV P M, XIONG Z H, CHANG J, WU C Z, CHEN Y, ZHU J X. An experimental study on biomass air-steam gasification in a fluidized bed[J]. Bioresour Technol, 2004, 95(1):95-101. doi: 10.1016/j.biortech.2004.02.003
    [14] QIAN K, KUMAR A. Catalytic reforming of toluene and naphthalene (model tar) by char supported nickel catalyst[J]. Fuel, 2017, 187:128-136. doi: 10.1016/j.fuel.2016.09.043
    [15] HU M, LAGHARI M, CUI B, XIAO B, ZHANG B, GUO D. Catalytic cracking of biomass tar over char supported nickel catalyst[J]. Energy, 2018, 145:228-237. doi: 10.1016/j.energy.2017.12.096
    [16] XIAO X, CAO J, MENG X, LE D D, LI L, OGAWA Y, SATO K, TAKARADA T. Synthesis gas production from catalytic gasification of waste biomass using nickel-loaded brown coal char[J]. Fuel, 2013, 103:135-140. doi: 10.1016/j.fuel.2011.06.077
    [17] SHEN W, MOMOI H, KOMATSUBARA K, SAITO T, YOSHIDA A, NAITO S. Marked role of mesopores for the prevention of sintering and carbon deposition in dry reforming of methane over ordered mesoporous Ni-Mg-Al oxides[J]. Catal Today, 2011, 171(1):150-155. doi: 10.1016/j.cattod.2011.04.003
    [18] YANG Y, ZHU J, ZHU G, YANG L, ZHU Y. The effect of high temperature on syngas production by immediate pyrolysis of wet sewage sludge with sawdust[J]. J Therm Anal Calorim, 2018, 132(3):1783-1794. doi: 10.1007/s10973-018-7143-9
    [19] HU M, GAO L, CHEN Z, MA C, ZHOU Y, CHEN J, MA S, LAGHARI M, XIAO B, ZHANG B, GUO D. Syngas production by catalytic in-situ steam co-gasification of wet sewage sludge and pine sawdust[J]. Energy Convers Manage, 2016, 111:409-416. doi: 10.1016/j.enconman.2015.12.064
    [20] 王晨光, 王铁军, 吕鹏梅, 常杰, 徐莹.整体式催化剂催化重整净化生物质粗燃气性能研究[J].燃料化学学报, 2007, 35(3):285-288. doi: 10.3969/j.issn.0253-2409.2007.03.006

    WANG Chen-guang, WANG Tie-jun, LÜ Peng-mei, CHANG Jie, XU Ying. Reforming of raw biomass fuel gas over monolithic catalyst[J]. J Fuel Chem Technol, 2007, 35(3):285-288. doi: 10.3969/j.issn.0253-2409.2007.03.006
    [21] XU L, SONG H, CHOU L. Carbon dioxide reforming of methane over ordered mesoporous NiO-MgO-Al2O3 composite oxides[J]. Appl Catal B:Environ, 2011, 108/109:177-190. doi: 10.1016/j.apcatb.2011.08.028
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  34
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-14
  • 修回日期:  2019-07-05
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-09-10

目录

    /

    返回文章
    返回