留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同酯基结构的棕榈油生物柴油的性能研究

陈五花 王业飞 丁名臣 史胜龙 杨震

陈五花, 王业飞, 丁名臣, 史胜龙, 杨震. 不同酯基结构的棕榈油生物柴油的性能研究[J]. 燃料化学学报(中英文), 2016, 44(11): 1356-1362.
引用本文: 陈五花, 王业飞, 丁名臣, 史胜龙, 杨震. 不同酯基结构的棕榈油生物柴油的性能研究[J]. 燃料化学学报(中英文), 2016, 44(11): 1356-1362.
CHEN Wu-hua, WANG Ye-fei, DING Ming-chen, SHI Sheng-long, YANG Zhen. Properties of palm oil biodiesels derived from different alcohols[J]. Journal of Fuel Chemistry and Technology, 2016, 44(11): 1356-1362.
Citation: CHEN Wu-hua, WANG Ye-fei, DING Ming-chen, SHI Sheng-long, YANG Zhen. Properties of palm oil biodiesels derived from different alcohols[J]. Journal of Fuel Chemistry and Technology, 2016, 44(11): 1356-1362.

不同酯基结构的棕榈油生物柴油的性能研究

基金项目: 

国家自然科学基金 51206188

国家自然科学基金 51474235

长江学者和创新团队发展计划 IRT1294

详细信息
    通讯作者:

    陈五花, Tel:0532-86915807, E-mail:cwh8157@163.com

  • 中图分类号: TK6

Properties of palm oil biodiesels derived from different alcohols

Funds: 

the National Natural Science Foundation of China 51206188

the National Natural Science Foundation of China 51474235

Program for Changjiang Scholars and Innovative Research Team in University IRT1294

  • 摘要: 以棕榈油为研究对象,分别与甲醇、乙醇、异丙醇和异丁醇进行酯交换反应制备了不同酯基结构的生物柴油。利用差示扫描量热仪和应力控制流变仪分析了不同酯基结构棕榈油生物柴油的结晶行为和低温流变性能,同时分析了酯基结构对生物柴油的氧化稳定性,40℃时的动力黏度、20℃时的密度等重要性质的影响。结果表明,随着醇的碳链长度的增加,棕榈油生物柴油的析蜡点和胶凝点均降低,特别是棕榈油异丁酯的析蜡点和胶凝点分别降低到了-2.57和-8.09℃,低温流动性得到了明显改善,且氧化诱导期略有延长,氧化稳定性有所改善。生物柴油的密度和黏度随着酯基结构的不同而有所变化,但其数值都符合中国生物柴油标准。
  • 图  1  不同酯基结构棕榈油生物柴油的曲线

    Figure  1  DSC curves of palm oil biodiesels derived from different alcohols

    图  2  不同酯基结构棕榈油生物柴油的黏弹性参数随温度的变化

    Figure  2  Changes of viscolastic parameters of palm oil biodiesel derived from different alcohols as a function of temperature

    (a): methyl ester; (b): ethyl ester; (c): isopropyl ester; (d): isobutyl ester

    图  3  不同酯基结构棕榈油生物柴油的电导率随时间的变化

    Figure  3  Changes of electrical conductivity of palm oil biodiesel derived from different alcohols as a function of time

    图  4  不同酯基结构棕榈油生物柴油的运动黏度

    Figure  4  Kinematic viscosity of palm oil biodiesels derived from different alcohols

    图  5  不同酯基结构棕榈油生物柴油的密度

    Figure  5  Density of palm oil biodiesels derived from different alcohols

    表  1  不同醇制备生物柴油的实验条件

    Table  1  Parameters for the preparation of palm oil biodiesels with different alcohols

    Alcohol Molar ratio Catalyst Catalyst quantity*
    w/%
    Reaction temperature
    t/℃
    Reaction time
    t/h
    Stirring speed /
    (r·min-1)
    Methanol 6 KOH 1.0 60 1 600
    Ethanol 6 KOH 1.0 60 3 600
    Isopropanol 9 H2SO4 1.5 84 4 600
    Isobutanol 9 H2SO4 1.5 100 4 600
    *: weight percentage of the catalyst used on the basis of oil
    下载: 导出CSV

    表  2  不同酯基结构棕榈油生物柴油的组成

    Table  2  Composition of palm oil biodiesels derived from different alcohols

    Fatty acid Composition w/%
    methyl ester ethyl ester isopropyl ester isobutyl ester
    C14:0 1.23 1.17 1.15 1.06
    C16:0 40.41 39.70 39.25 39.14
    C18:0 4.40 4.55 4.26 4.71
    C16:1 0.22 0.53 0.55 0.28
    C18:1 43.52 43.61 43.66 43.60
    C18:2 8.41 8.42 8.25 8.28
    C18:3 0.51 0.52 0.45 0.28
    Others 1.30 1.50 2.43 2.65
    下载: 导出CSV

    表  3  不同酯基结构棕榈油生物柴油的特性温度

    Table  3  Characteristic temperatures of palm oil biodiesel derived from different alcohols

    Ester tco/℃ tp1/℃ t2/℃ tp2/℃
    Methyl 11.37 9.48 -41.36 -43.80
    Ethyl 5.93 4.90 -42.13 -49.03
    Isopropyl -0.28 -2.08 -52.57 -54.81
    Isobutyl -2.57 -3.74 -53.56 -57.15
    下载: 导出CSV

    表  4  不同酯基结构棕榈油生物柴油的tgeltδ及Δ(tco-tgel)

    Table  4  The tgel, tδ and Δ(tco-tgel) of palm oil biodiesels derived from different alcohols

    Ester tδ/℃ tgel/℃ Δ(tco-tgel)/℃
    Methyl ester 11.30 10.30 1.07
    Ethyl ester 4.39 3.39 2.54
    Isopropyl ester -2.60 -3.59 3.31
    Isobutyl ester -7.60 -8.09 5.52
    下载: 导出CSV
  • [1] KNOTHE G, STEIDLEY K R. Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components[J]. Fuel, 2005, 84(9):1059-1065. https://www.researchgate.net/publication/222514930_Kinematic_viscosity_of_biodiesel_fuel_components_and_related_compounds_Influence_of_compound_structure_and_comparison_to_petrodiesel_fuel_components
    [2] ATABANI A E, SILITONGA A S, BADRUDDIN I A, MAHLIA T M I, MASJUKI H H, MEKHILEF S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics[J]. Renew Sustainable Energy Rev, 2012, 16(4):2070-2093. doi: 10.1016/j.rser.2012.01.003
    [3] MOSER B R. Biodiesel production, properties, and feedstocks[J]. In Vitro Cell Dev Biol Plant, 2009, 45(3):229-266. doi: 10.1007/s11627-009-9204-z
    [4] ROBERT O D.Cold flow properties of soybean oil fatty acid monoalkyl ester admixtures[J]. Energy Fuels, 2009, 23(8):4082-4091. doi: 10.1021/ef9002582
    [5] 陈秀, 袁银南, 来永斌, 王利平.生物柴油组成与组分结构对其低温流动性的影响[J].石油学报(石油加工), 2009, 25(5):673-677. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG200905011.htm

    CHEN Xiu, YUAN Yin-nan, LAI Yong-bin, WANG Li-ping. Impact of composition and molecular structure upon the cold flow proprtties for biodiesel[J]. Acta Pet Sin (Pet Process Sect), 2009, 25(5):673-677. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG200905011.htm
    [6] 陈五花, 王业飞, 陈建.低温下生物柴油的胶凝特性研究[J].燃料化学学报, 2015, 43(6):669-676. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18639.shtml

    CHEN Wu-hua, WANG Ye-fei, CHEN Jian. Gelling properties of biodiesel at low temperatures[J]. J Fuel Chem Technol, 2015, 43(6):669-676. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18639.shtml
    [7] 白禹, 李雪, 章留留, 王渊涛, 顾全荣.生物柴油的催化改性对其冷滤点的影响[J].燃料化学学报, 2009, 37(1):53-57. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17401.shtml

    BAI Yu, LI Xue, ZHANG Liu-liu, WANG Yuan-tao, GU Quan-rong. Effect of modification of biodiesel by HZSM-5 zeolite on cold filter plug point[J]. J Fuel Chem Technol, 2009, 37(1):53-57. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17401.shtml
    [8] CHEN B S, SUN Y Q, FANG J H, WANG J, JIANG W. Effect of cold flow improvers on flow properties of soybean biodiesel[J]. Biomass Bioenergy, 2010, 34(9):1309-1313. doi: 10.1016/j.biombioe.2010.04.001
    [9] WANG J N, CAO L C, HAN S. Effect of polymeric cold flow improvers on cold flow properties of biodiesel from waste cooking oil[J]. Fuel, 2014, 117(1):876-881. https://www.researchgate.net/publication/270872885_Effect_of_polymeric_cold_flow_improvers_on_flow_properties_of_biodiesel_from_waste_cooking_oil?_sg=WCDoZoOYYjmHfXie9-6Tk6Q1H9N4WYTv4YEKgHrvL2iW-psW1nB-mWF_k1oUXPMZ09_zX2wM0okoX7fsBhQlyg
    [10] 耿再新, 张苗娟, 付丽丽, 蒋登高.低凝点支链醇生物柴油合成新工艺研究[J].高校化学工程学报, 2012, 26(6):1073-1076. http://www.cnki.com.cn/Article/CJFDTOTAL-GXHX201206029.htm

    GENG Zai-xin, ZHANG Miao-juan, FU Li-li, JIANG Deng-gao. Study on the new synthetic technology of the branched-chain alcohol biodiesel with low freezing point[J]. J Chem Eng Chin Univ, 2012, 26(6):1073-1076. http://www.cnki.com.cn/Article/CJFDTOTAL-GXHX201206029.htm
    [11] MALINS K, KAMPARS V, KAMPARE R, PRILUCKA J, BRINKS J, MURNIEKS R, APSENIECE L. Properties of rapeseed oil fatty acid alkyl esters derived from different alcohols[J]. Fuel, 2014, 137(4):28-35. https://www.researchgate.net/publication/264827261_Properties_of_rapeseed_oil_fatty_acid_alkyl_esters_derived_from_different_alcohols
    [12] NAINWAL S, SHARMA N, SHARMA A S, JAIN S, JAIN S. Cold flow properties improvement of Jatropha curcas biodiesel and waste cooking oil biodiesel using winterization and blending[J]. Energy, 2015, 89:702-707. doi: 10.1016/j.energy.2015.05.147
    [13] 吕涯, 李骏, 欧阳福生.生物柴油调和对其低温流动性能的改善[J].燃料化学学报, 2011, 39(3):189-193. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17707.shtml

    LÜ Ya, LI Jun, OUYANG Fu-sheng. Effect of biodiesels blending on their low-temperature fluidity[J]. J Fuel Chem Technol, 2011, 39(3):189-193. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17707.shtml
    [14] SERRANO M, OLIVEROS R, SÁNCHEZ M, MORASCHINI A, MARTÍNEZ M, ARACIL J. Influence of blending vegetable oil mwthyl esters on biodiesel fule properties:Oxidative stability and cold flow properties[J]. Energy, 2014, 65(2):109-115. https://www.researchgate.net/profile/Marcos_Sanchez7/publication/259514751_Influence_of_blending_vegetable_oil_methyl_esters_on_biodiesel_fuel_properties_Oxidative_stability_and_cold_flow_properties/links/54e9d4110cf2f7aa4d5430b2.pdf
    [15] ROMANO S D, SORICHETTI P A. Dielectric Spectroscopy in Biodiesel Production and Characterization, Green Energy and Technology[M]. NewYork:Springer-Verlag London Limited, 2011:71-82.
    [16] 徐辉辉.生物柴油氧化安定性研究[D].郑州:郑州大学, 2010.

    XU Hui-hui. Study of oxidative atability of biodiesel[D]. Zhengzhou:Zhengzhou University, 2010.
    [17] PULLEN J, SAEED K. An overview of biodiesel oxidation stability[J]. Renewable Sustainable Energy Rev, 2012, 16(8):5924-5950. doi: 10.1016/j.rser.2012.06.024
    [18] ZULETA E C, RIOS L A, BENJUMEA P N. Oxidative stability and cold flow behavior of palm, sacha-inchi, jatropha and castor oil biodiesel blends[J]. Fuel Process Technol, 2012, 102(1):96-101.
    [19] NIMCEVIC D, PUNTIGAM R, WÖRGETTER M, GAPES R. Preparation of rapeseed oil esters of lower aliphatic alcohols[J]. J Am Oil Chem Soc, 2000, 77(3):275-280. doi: 10.1007/s11746-000-0045-1
    [20] 陈五花, 陈建, 蒋金兴, 陈本军.生物柴油在低温下析出晶体的热力学规律研究[J].石油炼制与化工, 2014, 45(3):14-17. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLH201403006.htm

    CHEN Wu-hua, CHEN Jian, JIANG Jin-xing, CHEN Ben-jun. Crystal precipitation law of biodiesel at low temperatures[J]. Pet Process Petrochem, 2014, 45(3):14-17. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLH201403006.htm
    [21] REFAAT A A. Correlation between the chemical structure of biodiesel and its physical properties[J]. Int J Environ Sci Technol, 2009, 6(4):677-694. doi: 10.1007/BF03326109
    [22] HOLMAN R A, ELMER O C. The rates of oxidation of unsaturated fatty acids and esters[J]. J Am Oil Chem Soc, 1947, 24(4):127-129. doi: 10.1007/BF02643258
    [23] MOSER B R. Comparative oxidative stability of fatty acid alkyl esters by accelerated methods[J]. J Am Oil Chem Soc, 2009, 86(7):699-706. doi: 10.1007/s11746-009-1376-5
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  46
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-29
  • 修回日期:  2016-09-14
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-11-10

目录

    /

    返回文章
    返回