留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NiY分子筛的合成及在微生物电解池阴极的析氢性能研究

胡丽 杨冬花 赵煜 董志帅 王改 薄琼

胡丽, 杨冬花, 赵煜, 董志帅, 王改, 薄琼. NiY分子筛的合成及在微生物电解池阴极的析氢性能研究[J]. 燃料化学学报(中英文), 2018, 46(5): 607-614.
引用本文: 胡丽, 杨冬花, 赵煜, 董志帅, 王改, 薄琼. NiY分子筛的合成及在微生物电解池阴极的析氢性能研究[J]. 燃料化学学报(中英文), 2018, 46(5): 607-614.
HU Li, YANG Dong-hua, ZHAO Yu, DONG Zhi-shuai, WANG Gai, BO Qiong. Synthesis of NiY zeolite and hydrogen evolution performance in cathode of a microbial electrolysis cell[J]. Journal of Fuel Chemistry and Technology, 2018, 46(5): 607-614.
Citation: HU Li, YANG Dong-hua, ZHAO Yu, DONG Zhi-shuai, WANG Gai, BO Qiong. Synthesis of NiY zeolite and hydrogen evolution performance in cathode of a microbial electrolysis cell[J]. Journal of Fuel Chemistry and Technology, 2018, 46(5): 607-614.

NiY分子筛的合成及在微生物电解池阴极的析氢性能研究

基金项目: 

山西省自然科学基金 2014011014-6

详细信息
  • 中图分类号: O643;TQ426

Synthesis of NiY zeolite and hydrogen evolution performance in cathode of a microbial electrolysis cell

Funds: 

the Natural Science Foundation of Shanxi Province, China 2014011014-6

More Information
    Corresponding author: YANG Dong-hua, Tel:13546305881, E-mail: ydh1962@163.com
  • 摘要: 在Na2O-Al2O3-SiO2-H2O体系中添加硝酸镍,采用导向剂法合成了NiY分子筛。利用XRD、SEM、TEM、N2吸附-脱附等手段对合成的NiY分子筛进行了表征。结果表明,随着镍添加量的增加,结晶度和zeta电位呈先增大后减小的趋势。当Si/Ni(mol ratio)大于5时,硝酸镍对分子筛的形成具有促进作用,当Si/Ni(mol ratio)小于5时,则具有抑制作用。晶粒粒径为1.5-3 μm,形貌为凹槽结构的六方或四方柱型,且具有微孔-介孔多级孔道结构特征。通过循环伏安曲线和极化曲线测试,在Si/Ni(mol ratio)=5时,样品的氧化还原性能最强,过电势最小,电催化活性最高。在12 h内,每4 mg的Si/Ni(mol ratio)=5样品,产气总量为10.1 mL,氢气纯度达81.69%,与Pt电极相比其氢气产量提高了28%。NiY分子筛表现出良好的析氢催化活性,有望取代Pt成为MEC新型阴极材料。
  • 图  1  分子筛的XRD谱图

    Figure  1  XRD patterns of zeolites

    Si/Ni(mol ratio): a: 200; b: 60; c: 20; d: 10; e: 5; f: 4; g: 3

    图  2  NiY分子筛的zeta电位和相对结晶度

    Figure  2  Zeta potential curve of NiY zeolites Si/Ni(mol ratio): a: 200; b: 60; c: 20; d: 10; e: 5; f: 4; g: 3

    图  3  分子筛的SEM照片

    Figure  3  SEM photos of zeolites Si/Ni(mol ratio): (a): pure Y; (b): 60; (c): 10; (d): 5

    图  4  NiY分子筛的TEM照片

    Figure  4  TEM images of NiY zeolites

    图  5  NiY的Ni 2p、O 1s和Si 2p电子结合能XPS谱图

    Figure  5  XPS pattern of Ni 2p, O 1s and Si 2p of NiY zeolites with different Si/Ni ratios Si/Ni(mol ratio): a=60; b=10; c=5

    图  6  NiY分子筛N2吸附-脱附等温线及孔径分布

    Figure  6  Nitrogen adsorption-desorption isotherms and pore size distribution of NiY zeolite

    图  7  不同样品的循环伏安曲线和极化曲线

    Figure  7  Cyclic voltammetry curves and polarization curves of different samples

    图  8  电流密度和产气速率随时间的变化

    Figure  8  Current density and gas production yield versus time Si/Ni(mol ratio): a: 5; b: 10; c: 20; d: 60; e: 200

    图  9  MEC的气体总量和气体组分

    Figure  9  Gas volume and Gas composition of MEC with different zeolites

    Si/Ni(mol ratio): a: 5; b: 10; c: 20; d: 60; e: 200 : H2; : CH4; : CO; : CO2

    表  1  测定区域的元素组成

    Table  1  Elemental composition of selective region

    Sample Si/Ni(mol ratio) Elemental composition of selective region watomic /% Si/Al (atomic ratio)
    O Na Al Si Ni
    a 60 65.48 9.59 9.93 14.96 0.04 1.51
    b 10 65.81 8.49 9.40 14.52 0.18 1.54
    c 5 65.91 8.61 8.08 15.93 1.02 1.97
    下载: 导出CSV

    表  2  分子筛的孔结构参数

    Table  2  Pore structure parameters of zeolite

    Sample ABET /(m2·g-1) Amicro /(m2·g-1) Ameso /(m2·g-1) vtotal /(cm3·g-1) vmicro /(cm3·g-1) vmeso /(cm3·g-1) dmicro /nm dmeso /nm
    NiY 341.0 320.6 20.38 0.3719 0.3189 0.0530 0.9400 2.673
    下载: 导出CSV
  • [1] 代红艳, 杨慧敏, 刘宪, 简选, 郭敏敏, 曹乐乐, 梁镇海. MoS2/石墨烯复合阴极材料的制备及微生物电解池催化产氢性能[J].高等学校化学学报, 2018, 39(2):351-358. doi: 10.7503/cjcu20170255

    DAI Hong-yan, YANG Hui-min, LIU Xian, JIAN Xuan, GUO Min-min, CAO Le-le, LIANG Zhen-hai. Preparation and electrochemical evaluation of MoS2/graphene as a catalyst for hydrogen evolution in microbial electrolysis cell[J]. Chem J Chin Univ, 2018, 39(2):351-358. doi: 10.7503/cjcu20170255
    [2] 谢淼, 徐龙君, 胡金凤, 徐艳昭.阴极催化剂对微生物燃料电池性能的影响[J].燃料化学学报, 2017, 45(10):1275-1280. doi: 10.3969/j.issn.0253-2409.2017.10.016

    XIE Miao, XU Long-jun, HU Jin-feng, XU Yan-zhao. Effects of cathode catalyst modification on the performance of microbial fuel cells[J]. J Fuel Chem Technol, 2017, 45(10):1275-1280. doi: 10.3969/j.issn.0253-2409.2017.10.016
    [3] 贾羽洁, 蒋剑春, 孙康, 陆天虹. Pt/Au原子比对活性炭负载Au-Pt直接甲酸燃料电池阴极催化剂性能的影响[J].燃料化学学报, 2011, 39(10):792-795. doi: 10.3969/j.issn.0253-2409.2011.10.013

    JIA Yu-jie, JIANG Jian-chun, SUN Kang, LU Tian-hong. Effect of Pt/Au atomic ratio in active carbonsupported Au-Pt catalyst on its cathodic performance in direct formic acid fuel cell[J]. J Fuel Chem Technol, 2011, 39(10):792-795. doi: 10.3969/j.issn.0253-2409.2011.10.013
    [4] JEREMIASSEA W, HAMELERS H V, KLEIJN J M, BUISMAN C J N. Use of biocompatible buffers to reduce the concentration overpotential for hydrogen evolution[J]. Environ Sci Technol, 2009, 43(17):6882-6887. doi: 10.1021/es9008823
    [5] CONWAY B E, JERKIEWICZ G. Relation of energy and coverages of underpotential and over potential deposited H at Pt and other metals to the 'vocano curve' for cathodic H2evolution kinetics[J]. Electro chim Acta, 2000, 45(25/26):4075-4083. doi: 10.1021/jp960130n
    [6] HU H, FAN Y, LIU H. Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts[J]. Int J Hydrogen Energy, 2009, 34(20):8535-8542. doi: 10.1016/j.ijhydene.2009.08.011
    [7] ZHANG Y M, MERRILL M D, LOGEN B E. The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells[J]. Int J Hydrogen Energy, 2010, 35:12020-12028. doi: 10.1016/j.ijhydene.2010.08.064
    [8] MARIO M, ELITSA C, RASHKO R, HUBENOVA Y. Novel nanostructured electrocatalysts for hydrogen evolution reaction in neutral and weak acidic solutions[J]. Int J Hydrogen Energy, 2012, 37:16522-16526. doi: 10.1016/j.ijhydene.2012.02.102
    [9] 周继红, 罗一斌, 宗保宁. Y型分子筛复合材料的成孔机理[J].石油炼制与化工, 2012, 43(1):26-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sylzyhg201201006

    ZHOU Ji-Hong, LUO Yi-bin, ZONG Bao-ning. Formation mechanism ofporous molecular sieve Y composite[J]. Pet Process Petrochem, 2012, 43(1):26-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sylzyhg201201006
    [10] KUMAR R, MUKHERJEE P, PANDEY P K, RAJMOHANAN P, BHAMMIK A. Role of oxyanions as promoter for enhancing nucleation and crystallization in the sythesis of MFI-type microporous mateials[J]. Micproporous Mesoporous Mater, 1998, 22(1/3):23-31.
    [11] RAJIV K, ASIM B, RANJEET K AHEDI, GANAPATHY S. Promoter-induced enhancement of the crystallization rate of zeolites and related molecular sieves[J]. Nature, 1996, 381(6580):298-300. doi: 10.1038/381298a0
    [12] 陈松.金属原位改性ZSM-5分子筛的合成及其形貌特征[J].石油学报(石油加工), 2009, 25(s2):116-119. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb-syjg2009z2028

    CHEN Song. Metal-incorpprated ZSM-5 by in-situ synthesis and its morphology characteristics[J]. Acta Pet Sin, 2009, 25(s2):116-119. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb-syjg2009z2028
    [13] 初筠. 甲烷无氧芳构化Mo/HMCM-22催化剂制备及成型研究[D]. 大连: 大连理工大学, 2013: 25-28.

    CHU Jun. Synthesis and Extruded Molding of Mo/HMCM-22 Catalyst in Methane Dehydroaromatization[D]. Dalian: Dalian University of Technology, 2013: 25-28.
    [14] 申宝剑, 覃正兴, 林枫, 周淑歌, 沈文, 王宝杰, 赵红娟, 刘宏海.碱处理脱硅与提高Y型分子筛硅铝比-矛盾的对立与统一[J].催化学报, 2012, 33(1):152-163. http://d.wanfangdata.com.cn/Periodical_cuihuaxb201201016.aspx

    SHEN Bao-jian, QIN Zheng-xing, LIN Feng, ZHOU Shu-ge, SHEN Wen, WANG Bao-jie, ZHAO Hong-juan, LIU Hong-hai. Desilication by alkaline treatment and increasing the silica to alumina ratio of zeolite Y[J]. Chin J Catal, 2012, 33(1):152-163. http://d.wanfangdata.com.cn/Periodical_cuihuaxb201201016.aspx
    [15] 查全性.物理化学, 电极过程动力学导论[M].北京:科学出版社, 2002.

    CHA Quan-xing. Physical Chemistry, Dynamics Introduction of Electrode Process[M]. Beijing:Science Press, 2002.
    [16] LIU H, GUO R X, LIU Y, THOMPSON G E, LIU Z. The effect of processing gas on corrosion performance of electroless Ni-W-P coatings treated by laser[J]. Surf Coat Technol, 2012, 206(15):3350-3359. doi: 10.1016/j.surfcoat.2012.01.039
    [17] PRIETO P, NISTOR V, NOUNEH K, QYAMA A, ABD-LEFDIL M, DIAZ R. XPS study of silver, nickel and bimetallic silver-nickel nanoparticles prepared by seed-mediated growth[J]. Appl Surf Sci, 2012, 258(22):8807-8813. doi: 10.1016/j.apsusc.2012.05.095
    [18] 范春晖, 马宏瑞, 花莉, 王家宏, 王海军. FT-IR和XPS对沸石合成特性及Cr(Ⅲ)去除机制的谱学表征[J].光谱学与光谱学分析, 2012, 32(2):324-329. http://d.wanfangdata.com.cn/Periodical_gpxygpfx201202009.aspx

    FAN Chun-hui, MA Hong-rui, HUA Li, WANG Jia-hong, WANG Hai-jun. FT-IR and XPS analysis of characteristics of synthesized zeolite and removal mechanisms for Cr(Ⅲ)[J]. Spectrosc Spect Anal, 2012, 32(2):324-329. http://d.wanfangdata.com.cn/Periodical_gpxygpfx201202009.aspx
    [19] KIM K S, WINOGRAD N. X-ray photoelectron spectroscopic studies of palladium oxides and the palladium-oxygen electrode[J]. Surf Sci, 1974, 43:625. doi: 10.1016/0039-6028(74)90281-7
    [20] KIM K S, DAVIS R E. Electron spectroscopy of the nickel-oxygen system[J]. J Electron Spectrosc Relat Phenom, 1972/73, 1(3):251. doi: 10.1016/0368-2048(72)85014-X
    [21] KRESGE C T, LEONOWICZ M E, ROTH W J, VARTULI J C, BECK J C. Ordered mesoporous melocular sievers synthesized by a liquid template mechanism[J]. Nature, 1992, 35:710-712. http://cn.bing.com/academic/profile?id=f79f873424e8c64c6f7eadd0470a9dc6&encoded=0&v=paper_preview&mkt=zh-cn
    [22] 曹寅亮. 高活性镍基析氢电极的制备及其在碱性条件下析氢行为研究[D]. 北京: 北京化工大学, 2013: 99-112.

    CAO Yin-liang. Synthesis of highly active nickel-bsced hydrogen evolution electrodes and their hydrogen evolution bebavior in the alkaline medium[D]. Beijing: Beijing University of Chemical Technology, 2013: 99-112.
    [20] FREGUIA S, RABAEY K, YUAN Z, KELLER J. Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells[J]. Electrochim Acta, 2007, 53(2):598-603. doi: 10.1016/j.electacta.2007.07.037
    [23] LIU M Y, HE Y Q, MAO Z Q, XIE X F. CO-poisoning mechanism of anodic electrocatalyst in proton-exchange membrane fuel cell[J]. Chin J Power Sources, 2002, 26(z1):247-249. https://www.researchgate.net/publication/309697610_CO-poisoning_mechanism_of_anodic_electrocatalyst_in_proton-exchange_membrane_fuel_cell
    [24] 贾梦秋, 杨文胜.应用电化学[M].北京:高等教育出版社, 2004:124.

    JIA Meng-qiu, YANG Wen-sheng. Applied Electrochemistry[M]. Beijing:Higher Education Press, 2004:124.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  36
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-30
  • 修回日期:  2018-03-16
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-05-10

目录

    /

    返回文章
    返回