留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MoS2负载量对MoS2/TiO2光催化降解苯酚效率的影响及其作用机理研究

王芳 王雪芹 程凯 王俊磊 宋华

王芳, 王雪芹, 程凯, 王俊磊, 宋华. MoS2负载量对MoS2/TiO2光催化降解苯酚效率的影响及其作用机理研究[J]. 燃料化学学报(中英文), 2017, 45(8): 1001-1008.
引用本文: 王芳, 王雪芹, 程凯, 王俊磊, 宋华. MoS2负载量对MoS2/TiO2光催化降解苯酚效率的影响及其作用机理研究[J]. 燃料化学学报(中英文), 2017, 45(8): 1001-1008.
WANG Fang, WANG Xue-qin, CHENG Kai, WANG Jun-lei, SONG Hua. Effect of MoS2 loading on the photocatalytic performance of MoS2/TiO2 nanocomposites in phenol degradation and the corresponding reaction mechanism analysis[J]. Journal of Fuel Chemistry and Technology, 2017, 45(8): 1001-1008.
Citation: WANG Fang, WANG Xue-qin, CHENG Kai, WANG Jun-lei, SONG Hua. Effect of MoS2 loading on the photocatalytic performance of MoS2/TiO2 nanocomposites in phenol degradation and the corresponding reaction mechanism analysis[J]. Journal of Fuel Chemistry and Technology, 2017, 45(8): 1001-1008.

MoS2负载量对MoS2/TiO2光催化降解苯酚效率的影响及其作用机理研究

基金项目: 

黑龙江省博士后基金面上项目 LBH-Z15032

东北石油大学校青年科学基金 NEPUBS201508

详细信息
    通讯作者:

    宋华, Te1:0459-6503167, E-mail:songhua2004@sina.com

  • 中图分类号: O643.361

Effect of MoS2 loading on the photocatalytic performance of MoS2/TiO2 nanocomposites in phenol degradation and the corresponding reaction mechanism analysis

Funds: 

the Province Postdoctoral Fund LBH-Z15032

Youth Fund of Northeast Petroleum University NEPUBS201508

  • 摘要: 通过水解法制备TiO2纳米颗粒,与经过超声处理后的MoS2片层纳米材料复合制备MoS2/TiO2纳米催化剂,考察不同MoS2负载量对其光催化降解苯酚效率及路径的影响。XRD、SEM、EDS、FT-IR和UV-vis DRS等表征结果表明,复合催化剂主要由锐钛矿型TiO2和MoS2组成;剥离后的MoS2呈现薄片层状结构,均匀地分散在TiO2纳米颗粒当中。光催化降解苯酚性能测试结果显示,对于MoS2/TiO2催化剂,MoS2负载量的提高有利于光催化降解苯酚效率的提高;当MoS2负载量为27%时,复合MoS2/TiO2纳米颗粒的光催化性能最佳,反应80 min后可将苯酚完全降解。通过对苯酚降解过程中生成中间产物跟踪发现,MoS2负载量的提高有利于促进中间产物苯醌、对苯二酚以及邻苯二酚的生成,进而提升了MoS2/TiO2复合材料的光催化性能。
  • 图  1  放大4 000X复合催化剂的SEM照片

    Figure  1  SEM images of pure TiO2 (a), 2.7% MoS2/TiO2 (b), 27% MoS2/TiO2 (c), 50% MoS2/TiO2 (d), untreated MoS2 (e), ultrasonic exfoliated MoS2 (f)

    图  2  MoS2/TiO2复合催化剂的红外光谱谱图

    Figure  2  FT-IR spectra of MoS2/TiO2

    图  3  纯TiO2纳米颗粒,未剥离MoS2以及MoS2/TiO2复合材料的X射线衍射光谱谱图

    Figure  3  XRD patterns of pure TiO2, untreated MoS2 and MoS2/TiO2 nanocomposites

    图  4  纯TiO2纳米颗粒以及MoS2/TiO2复合材料的UV-vis谱图

    Figure  4  UV-vis spectra of pure TiO2 and MoS2/TiO2 nanocomposites

    图  5  苯酚及其反应中间产物在不同负载量MoS2/TiO2光催化作用下随时间变化的紫外-可见吸收光谱谱图

    Figure  5  UV-vis spectra of the evolved intermediates during the photo-degradation phenol process collected at given time intervals; B, P, C, and H represent benzoquinone, phenol, catechol, and hydroquinone, respectively

    图  6  苯酚在MoS2/TiO2复合纳米颗粒催化作用下的降解路径示意图

    Figure  6  Photocatalytic-decomposition pathways of phenol over MoS2/TiO2 nanocomposites

    图  7  不同催化剂作用下苯酚及其反应中间产物浓度随光照时间的变化

    Figure  7  Evolution of phenol and hydroxylated phenolic intermediates upon irradiation over the MoS2/TiO2 catalysts with different MoS2 loadings

    图  8  加入不同捕获剂对降解苯酚的影响

    Figure  8  Effect of scavengers on the degradation of phenol

    图  9  MoS2/TiO2复合催化剂降解苯酚过程机理示意图

    Figure  9  Proposed photocatalytic phenol and charge transfer mechanism over the MoS2/TiO2 nanocomposites

    表  1  复合催化剂的EDS元素分析

    Table  1  Results of EDS spectra of MoS2/TiO2

  • [1] AHMED S, RASUL M G, MARTENS W N, BROWN R, HASHIB M A. Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments[J]. Desalination, 2010, 261(1): 3-18. https://www.researchgate.net/publication/223424283_Heterogeneous_Photocatalytic_Degradation_of_Phenols_in_Wastewater_A_Review_on_Current_Status_and_Developments
    [2] GAO F, WANG Y, SHI D, ZHANG J, WANG M, JING X, HUMPHRY-Baker R, WANG P, ZAKEERUDDIN SM, GRÄTZEL M. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells[J]. J Am Chem Soc, 2008, 130(32): 10720-10728. doi: 10.1021/ja801942j
    [3] 王广建, 李佳佳, 吴春泽, 王芳. TiO2-Al2O3复合载体的制备及Co-Mo/TiO2-Al2O3催化剂加氢脱硫性能的研究[J].燃料化学学报, 2016, 44(12): 1518-1522. doi: 10.3969/j.issn.0253-2409.2016.12.016

    WANG Guang-jian, LI Jia-jia, WU Chun-ze, WANG Fang. Study on the preparation of TiO2-Al2O3 composite support and its application in Co-Mo/TiO2-Al2O3 catalyst for hydro-desulfurization[J]. J Fuel Chem Technol, 2016, 44(12): 1518-1522. doi: 10.3969/j.issn.0253-2409.2016.12.016
    [4] RIYAPAN S, ZHANG Y, WONGKAEW A, PONGTHAWORNSAKUN B, MONNIER J. R, PANPRANOT. Preparation of improved Ag-Pd/TiO2 catalysts using the combined strong electrostatic adsorption and electroless deposition methods for the selective hydrogenation of acetylene[J]. Catal Sci Technol, 2016, 6(14): 5608-5617. http://pubs.rsc.org/en/content/articlepdf/2016/cy/c6cy00121a
    [5] FEI J, LI J. Controlled preparation of porous TiO2-Ag nanostructures through supramolecular assembly for plasmon-enhanced photocatalysis[J]. Adv Mater, 2015, 27(2): 314-319. doi: 10.1002/adma.v27.2
    [6] WANG P, YAP P S, LIM T T. C-N-S tridoped TiO2 for photocatalytic degradation of tetracycline under visible-light irradiation[J]. Appl Catal A: Gen, 2011, 399(1): 252-261. https://www.researchgate.net/publication/232404312_C-N-S_tridoped_TiO2_for_photocatalytic_degradation_of_tetracycline_under_visible-light_irradiation
    [7] 郝瑞鹏, 杨朋举, 王志坚, 朱珍平.贵金属负载TiO2对光催化还原CO2选择性的影响[J].燃料化学学报, 2015, 43(1):94-99. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18561.shtml

    HAO Rui-peng, YANG Peng-ju, WANG Zhi-jian, ZHU Zhen-ping. Effect of noble metals loaded TiO2 on the selectivity of photocatalytic CO2 reduction[J]. J Fuel Chem Technol, 2015, 43(1): 94-99. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18561.shtml
    [8] WEI X, SHAO C, LI X, LU N, WANG K, ZHANG Z, LIU Y. Facile in situ synthesis of plasmonicnanoparticles-decorated g-C3N4/TiO2 heterojunction nanofibers and comparison study of their photosynergistic effects for efficient photocatalytic H2 evolution[J]. Nanoscale, 2016, 8(21): 11034-11043. doi: 10.1039/C6NR01491G
    [9] KAYACI F, VEMPATI S, OZGIT Akgun C, DONMEZ I, BIYIKLI N, UYAR T. Selective isolation of the electron or hole in photocatalysis: ZnO-TiO2 and TiO2-ZnO core-shell structured heterojunction nanofibers via electrospinning and atomic layer deposition[J]. Nanoscale, 2014, 6(11): 5735-5745. doi: 10.1039/c3nr06665g
    [10] ZHENG L, HAN S, LIU H, YU P, FANG X. Hierarchical MoS2 Nanosheet@TiO2 Nanotube Array Composites with Enhanced Photocatalytic and Photocurrent Performances[J]. Small, 2016, 12(11): 1527-1536. doi: 10.1002/smll.v12.11
    [11] XIE J, ZHANG H, LI S, WANG R, SUN X, ZHOU M. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution[J]. Adv Mater, 2013, 25(40): 5807-5813. doi: 10.1002/adma.v25.40
    [12] YOON Y, GANAPATHI K, SALAHUDDIN S. How good can monolayer MoS2 transistors be?[J]. Nano Lett, 2011, 11(9): 3768-3773. doi: 10.1021/nl2018178
    [13] BANG G S, NAM K W, KIM J Y, SHIN J, CHOU J W, CHOI S Y. Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets[J]. Acs Appl Mater Inter, 2014, 6(10): 7084-7089. doi: 10.1021/am4060222
    [14] ZHOU K G, MAO N N, WANG H X, PENG Y, ZHANG H L. A Mixed-Solvent Strategy for Efficient Exfoliation of Inorganic Graphene Analogues[J]. Angew Chem Int Edit, 2011, 123(46): 11031-11034. doi: 10.1002/ange.v123.46
    [15] MA J, TAN X, YU T, LI X. Fabrication of g-C3N4/TiO2 hierarchical spheres with reactive {001} TiO2 crystal facets and its visible-light photocatalytic activity[J]. Int J Hydrogen Energ, 2016, 41(6): 3877-3887. doi: 10.1016/j.ijhydene.2015.12.191
    [16] WANG C, ZHU W, XU Y, XU H, ZHANG M, CHAO Y, YIN S, LI H, WANG J. Preparation of TiO2/g-C3N4 composites and their application in photocatalytic oxidative desulfurization[J]. Ceram Int, 2014, 40(8): 11627-11635. doi: 10.1016/j.ceramint.2014.03.156
    [17] TOBILE K. Symmetric pseudocapacitors based on molybdenum disulfide (MoS2)-modified carbon nanospheres: correlating physicochemistry and synergistic interaction on energy storage[J]. J Mater Chem A, 2016, 4: 6411-6425. doi: 10.1039/C6TA00114A
    [18] LI J G, ISHIGAKI T, SUN X. Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: phase-selective synthesis and physicochemical properties[J]. J Phys Chem C, 2007, 111(13): 4969-4976. doi: 10.1021/jp0673258
    [19] ZHU Y, LING Q, LIU Y, WANG H, ZHU Y. Photocatalytic H2 evolution on MoS2-TiO2 catalysts synthesized via mechanochemistry[J]. Phys Chem Chem Phys, 2015, 17(2): 933-940. doi: 10.1039/C4CP04628E
    [20] 吴思展. 类石墨氮化碳(g-C3N4)的合成、加工处理、修饰及其光催化性能的研究[D]. 华南理工大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10561-1015020894.htm

    WU Si-zhan. Synthesis, Processing and modification of graphitic carbon nitride with enhanced photocatalytic activity[D]. South China University Technol, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10561-1015020894.htm
    [21] WANG X, SØ L, REN S, WENDT S, HALD P, MAMAKHEL A. The influence of crystallite size and crystallinity of anatase nanoparticles on the photo-degradation of phenol[J]. J Catal, 2014, 310: 100-108. doi: 10.1016/j.jcat.2013.04.022
    [22] CHEN B, LIU E, HE F, SHI C, HE C, LI J. 2D sandwich-like carbon-coated ultrathin TiO2@defect-rich MoS2 hybrid nanosheets: Synergistic-effect-promoted electrochemical performance for lithium ion batteries[J]. Nano Energy, 2016, 26: 541-549. doi: 10.1016/j.nanoen.2016.06.003
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  24
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-10
  • 修回日期:  2017-05-31
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-08-10

目录

    /

    返回文章
    返回