留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Catalytic activity of Pd-Ag nanoparticles supported on carbon nanotubes for the electro-oxidation of ethanol and propanol

ZHANG Yuan-yuan YI Qing-feng CHU Hao NIE Hui-dong

张媛媛, 易清风, 楚浩, 聂会东. 碳纳米管负载的纳米Pd-Ag催化剂对乙醇和丙醇氧化的电化学活性[J]. 燃料化学学报(中英文), 2017, 45(4): 475-483.
引用本文: 张媛媛, 易清风, 楚浩, 聂会东. 碳纳米管负载的纳米Pd-Ag催化剂对乙醇和丙醇氧化的电化学活性[J]. 燃料化学学报(中英文), 2017, 45(4): 475-483.
ZHANG Yuan-yuan, YI Qing-feng, CHU Hao, NIE Hui-dong. Catalytic activity of Pd-Ag nanoparticles supported on carbon nanotubes for the electro-oxidation of ethanol and propanol[J]. Journal of Fuel Chemistry and Technology, 2017, 45(4): 475-483.
Citation: ZHANG Yuan-yuan, YI Qing-feng, CHU Hao, NIE Hui-dong. Catalytic activity of Pd-Ag nanoparticles supported on carbon nanotubes for the electro-oxidation of ethanol and propanol[J]. Journal of Fuel Chemistry and Technology, 2017, 45(4): 475-483.

碳纳米管负载的纳米Pd-Ag催化剂对乙醇和丙醇氧化的电化学活性

基金项目: 

the National Natural Science Foundation of China 21376070

Hunan Provincial Natural Science Foundation of China 14JJ2096

A Project supported by Scientific Research Fund of Hunan Provincial Education Department 11K023

详细信息
  • 中图分类号: O646

Catalytic activity of Pd-Ag nanoparticles supported on carbon nanotubes for the electro-oxidation of ethanol and propanol

Funds: 

the National Natural Science Foundation of China 21376070

Hunan Provincial Natural Science Foundation of China 14JJ2096

A Project supported by Scientific Research Fund of Hunan Provincial Education Department 11K023

More Information
  • 摘要: 在乙二醇和水混合溶剂中,采用硼氢化钠还原的方法制备了多壁碳纳米管(MWCNT)负载的Pd和Pd-Ag纳米颗粒催化剂;在碱性介质中,用循环伏安法测试了这些催化剂对乙醇、正丙醇和异丙醇的电氧化性能。结果表明,Pd和Pd-Ag纳米颗粒均匀地分散在MWCNT表面;Pd/MWCNT、Pd4Ag1/MWCNT、Pd2Ag1/MWCNT和Pd1Ag1/MWCNT催化剂上金属颗粒的平均粒径分别为7、4、7和11 nm。相比乙醇和异丙醇,所制备的催化剂对正丙醇的氧化表现出较大的电流密度。与Pd/MWCNT催化剂相比,双金属PdnAg1/MWCNT(n=4、2、1)催化剂,尤其是Pd4Ag1/MWCNT上的电流密度更大,表明Ag的加入提高了Pd催化剂对醇氧化的电化学活性,其原因是因为醇氧化过程所产生的中间体物种在双金属Pd-Ag/MWCNT催化剂上的吸附力有所减弱。
    本文的英文电子版由Elsevier出版社在ScienceDirect上出版 (http://www.sciencedirect.com/science/journal/18725813).
  • Figure  1  SEM images of (a) Pd/MWCNT, (b) Pd4Ag1/MWCNT, (c) Pd2Ag1/MWCNT, and (d) Pd1Ag1/MWCNT

    Figure  2  TEM images of (a) Pd/MWCNT, (b) Pd4Ag1/MWCNT, (c) Pd2Ag1/MWCNT, and (d) Pd1Ag1/MWCNT

    Figure  3  XRD patterns of (a) Pd/MWCNT, (b) Pd4Ag1/MWCNT, (c) Pd2Ag1/MWCNT, and (d) Pd1Ag1/MWCNT

    Figure  4  Energy dispersive spectroscopy (EDS) of the Pd4Ag1/MWCNT catalyst

    Figure  5  Cyclic voltammograms of various catalysts in 1 mol/L NaOH solution at 50 mV/s

    Figure  6  Cyclic voltammograms of various catalysts in 1 mol/L NaOH solution in the presence of 0.5 mol/L ethanol at 50 mV/s

    Figure  7  Cyclic voltammograms of the Pd4Ag1/MWCNT catalyst in 1 mol/L NaOH solution with various ethanol concentrations (c1 to c5: 0.1, 0.3, 0.5, 0.7 and 1.0 mol/L) at 50 mV/s

    inset (a) is a plot of anodic peak current density (jp) vs. the ethanol concentration c(EtOH) and inset (b) is a plot of anodic peak potential (Ep) vs. the ethanol concentration c(EtOH)

    Figure  8  Cyclic voltammograms of various catalysts in 1 mol/L NaOH solution in the presence of 0.5 mol/L n-propanol (a) and 0.5 mol/L iso-propanol (b) at 50 mV/s

    Figure  9  Cyclic voltammograms of the Pd4Ag1/MWCNT catalyst in 1 mol/L NaOH solution with various concentrations of n-propanol (a) and iso-propanol (b) (c1 to c5: 0.1, 0.3, 0.5, 0.7 and 1.0 mol/L) at 50 mV/s

    inset (a1) is a plot of anodic peak current density jp vs. n-propanol concentration c(n-C3H7OH), whereas inset (a2) is a plot of anodic peak potential (Ep) vs. c(n-C3H7OH). inset (b1) is a plot of jp vs. the iso-propanol concentration c(iso-C3H7OH), whereas inset (b2) is a plot of Ep vs. c(iso-C3H7OH)

    Figure  10  400 consecutive sweeps of cyclic voltammograms on the Pd4Ag1/MWCNT catalyst in 1 mol/L NaOH solution containing 0.5 mol/L ethanol (a), 0.5 mol/L n-propanol (b) and 0.5 mol/L iso-propanol (c) at 100 mV/ s

  • [1] XU C W, CHENG L Q, SHEN P K, LIU Y L. Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media[J]. Electrochem Commun, 2007, 9(5):997-1001. doi: 10.1016/j.elecom.2006.12.003
    [2] HAO A, PAN L N, CUI H, ZHOU D D, WANG B, ZHAI J P, LI Q, PAN Y. Electrocatalytic performance of Pd nanoparticles supported on TiO2-MWCNTs for methanol, ethanol, and isopropanol in alkaline media[J]. Electrochim Acta, 2015, 741:56-63. https://www.researchgate.net/publication/273399201_Electrocatalytic_performance_of_Pd_nanoparticles_supported_on_TiO2-MWCNTs_for_methanol_ethanol_and_isopropanol_in_alkaline_media
    [3] LI Y H, XU Q Z, LI Q Y, WANG H Q, HUANG Y G, XU C W. Pd deposited on MWCNTs modified carbon fiber paper as high-efficient electrocatalyst for ethanol electrooxidation[J]. Electrochim Acta, 2014, 147:151-156. doi: 10.1016/j.electacta.2014.09.129
    [4] HU F P, WANG Z Y, LI Y L, LI C M, ZHANG X, SHEN P K. Improved performance of Pd electrocatalyst supported on ultrahigh surface area hollow carbon spheres for direct alcohol fuel cells[J]. J Power Sources, 2008, 177(1):61-66. doi: 10.1016/j.jpowsour.2007.11.024
    [5] YI Q F, SUN L Z, LIU X P, NIE H D. Palladium-nickel nanoparticles loaded on multi-walled carbon nanotubes modified withβ-cyclodextrin for electrooxidation of alcohols[J]. Fuel, 2013, 111:88-95. doi: 10.1016/j.fuel.2013.04.051
    [6] SHEN P K, XU C W. Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts[J]. Electrochem Commun, 2006, 8(1):184-188. doi: 10.1016/j.elecom.2005.11.013
    [7] WANG X G, MA G S, ZHU F C, LIU N M, TANG B, ZHANG Z H. Preparation and characterization of micro-arc-induced Pd/TM (TM=Ni, Co and Ti) catalysts and comparison of their electrocatalytic activities toward ethanol oxidation[J]. Electrochim Acta, 2013, 114:500-508. doi: 10.1016/j.electacta.2013.10.049
    [8] WANG W, YANG Y, LIU Y Q, ZHANG Z, DONG W K, LEI Z Q. Hybrid NiCoOx, adjacent to Pd nanoparticles as a synergistic electrocatalyst for ethanol oxidation[J]. J Power Sources, 2015, 273:631-637. doi: 10.1016/j.jpowsour.2014.09.120
    [9] CAI J D, HUANG Y Y, GUO Y L. Bi-modified Pd/C catalyst via irreversible adsorption and its catalytic activity for ethanol oxidation in alkaline medium[J]. Electrochim Acta, 2013, 99(6):22-29. https://www.researchgate.net/publication/256698283_Bi-modified_PdC_catalyst_via_irreversible_adsorption_and_its_catalytic_activity_for_ethanol_oxidation_in_alkaline_medium
    [10] DONG Q, ZHAO Y, HAN X, WANG Y, LIU M C, LI Y. Pd/Cu bimetallic nanoparticles supported on graphene nanosheets:Facile synthesis and application as novel electrocatalyst for ethanol oxidation in alkaline media[J]. Int J Hydrogen Energy, 2014, 39(27):14669-14679. doi: 10.1016/j.ijhydene.2014.06.139
    [11] QIN Y H, LI Y F, LV R L, WANG T L, WANG W G, WANG C W. Pd-Au/C catalysts with different alloying degrees for ethanol oxidation in alkaline media[J]. Electrochim Acta, 2014, 144:50-55. doi: 10.1016/j.electacta.2014.08.078
    [12] FASHEDEMI O O, OZOEMENA K I. Comparative electrocatalytic oxidation of ethanol, ethylene glycol and glycerol in alkaline medium at Pd-decorated FeCo@Fe/C core-shell nanocatalysts[J]. Electrochim Acta, 2014, 128(9):279-286. https://www.researchgate.net/publication/270988693_Comparative_electrocatalytic_oxidation_of_ethanol_ethylene_glycol_and_glycerol_in_alkaline_medium_at_Pd-decorated_FeCoFeC_core-shell_nanocatalysts
    [13] YI Q F, NIU F J, SUN L Z. Fabrication of novel porous Pd particles and their electroactivity towards ethanol oxidation in alkaline media[J]. Fuel, 2011, 90(8):2617-2623. doi: 10.1016/j.fuel.2011.03.038
    [14] YI Q F, NIU F J, SONG L H, LIU X P, NIE H D. Electrochemical activity of novel titanium-supported porous binary Pd-Ru particles for ethanol oxidation in alkaline media[J]. Electroanalysis, 2011, 23(9):2232-2240. doi: 10.1002/elan.201100148
    [15] YI Q F, CHU H, CHEN Q H, YANG Z, LIU X P. High performance Pd, PdNi, PdSn and PdSnNi nanocatalysts supported on carbon nanotubes for electrooxidation of C2-C4 alcohols[J]. Electroanalysis, 2014, 27:388-397.
    [16] WU M L, CHEN D H, HUANG T C. Preparation of Pd/Pt bimetallic nanoparticles in water/AOT/isooctane microemulsions[J]. J Colloid Interface Sci, 2001, 243(1):102-108. doi: 10.1006/jcis.2001.7887
    [17] LIMA F H B, CASTRO J F R D, TICIANELLI E A. Silver-cobalt bimetallic particles for oxygen reduction in alkaline media[J]. J Power Sources, 2006, 161(2):806-812. doi: 10.1016/j.jpowsour.2006.06.029
    [18] WU C, WU F, BAI Y, YI B L, ZHANG H M. Cobalt boride catalysts for hydrogen generation from alkaline NaBH4 solution[J]. Mater Lett, 2005, 59(14):1748-1751.
    [19] YI Q F, NIU F J, SUN L Z. Fabrication of novel porous Pd particles and their electroactivity towards ethanol oxidation in alkaline media[J]. Fuel, 2011, 90(8):2617-2623. doi: 10.1016/j.fuel.2011.03.038
    [20] LIU J P. Preparation and electrocatalytic properties of graphene supported Pd-M nanocomposites[D]. Changsha:Hunan University, 2012.
    [21] LIANG Z X, ZHAO T S, XU J B, ZHU L D. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media[J]. Electrochim Acta, 2009, 54(8):2203-2208. doi: 10.1016/j.electacta.2008.10.034
    [22] YI Q F, CHU H, CHEN Q H, YANG Z, LIU X P. High performance Pd, PdNi, PdSn and PdSnNi nanocatalysts supported on carbon nanotubes for electrooxidation of C2-C4 alcohols[J]. Electroanalysis, 2015, 27(2):388-397. doi: 10.1002/elan.v27.2
    [23] NGUYEN S T, LAW H M, NGUYEN H T, KRISTIAN N, WANG S Y, CHAN S H, WANG X. Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media[J]. Appl Catal B:Environ, 2009, 91(1/2):507-515. https://www.researchgate.net/publication/223376287_Enhancement_effect_of_Ag_for_PdC_towards_the_ethanol_electro-oxidation_in_alkaline_media
  • 加载中
图(10)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  38
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-10
  • 修回日期:  2017-03-03
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-04-10

目录

    /

    返回文章
    返回