留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阳极底物对微生物燃料电池处理秸秆水解物性能的影响

王美聪 刘婷婷 张学军 吴丹 樊立萍

王美聪, 刘婷婷, 张学军, 吴丹, 樊立萍. 阳极底物对微生物燃料电池处理秸秆水解物性能的影响[J]. 燃料化学学报(中英文), 2018, 46(6): 762-768.
引用本文: 王美聪, 刘婷婷, 张学军, 吴丹, 樊立萍. 阳极底物对微生物燃料电池处理秸秆水解物性能的影响[J]. 燃料化学学报(中英文), 2018, 46(6): 762-768.
WANG Mei-cong, LIU Ting-ting, ZHANG Xue-jun, WU Dan, FAN Li-ping. Effect of anode substrate on the performance of microbial fuel cells for dealing with the straw hydrolysate[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 762-768.
Citation: WANG Mei-cong, LIU Ting-ting, ZHANG Xue-jun, WU Dan, FAN Li-ping. Effect of anode substrate on the performance of microbial fuel cells for dealing with the straw hydrolysate[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 762-768.

阳极底物对微生物燃料电池处理秸秆水解物性能的影响

基金项目: 

国家自然科学基金 41373127

国家自然科学基金 41603001

辽宁省高等学校优秀科技人才支持计划 LR2015052

辽宁省教育厅科学研究一般项目 L2015428

中国与马其顿科技合作第五届例会项目 5-5

辽宁省自然科学基金重点项目 20170540724

详细信息
  • 中图分类号: X172

Effect of anode substrate on the performance of microbial fuel cells for dealing with the straw hydrolysate

Funds: 

the National Natural Science Foundation of China 41373127

the National Natural Science Foundation of China 41603001

the Program for Liaoning Excellent Talents in University of China LR2015052

General Project of the Education Department of Liaoning Province L2015428

The Fifth Regular Meeting of Science and Technology Cooperation Between China and Macedonia 5-5

Liaoning Natural Science Foundation of China 20170540724

More Information
    Corresponding author: WANG Mei-cong, Tel: 024-89386988, E-mail: hollyword@163.com, hollywang@syuct.edu.cn
  • 摘要: 以双室微生物燃料电池为反应器,铁氰化钾为阴极液,研究污水处理厂活性污泥菌液和玉米秸秆水解液对MFC的产电性能的影响。结果表明,随着阳极中活性污泥菌液体积(1.5、3.0、4.5、6.0 mL)增加,MFC的产电量逐渐增加,当活性污泥的体积增加至7.5 mL时,产电量开始呈下降趋势;玉米秸秆水解液在底物中的浓度为0、10、15、20、30、40 g/L时,电池的稳定电压分别为54、157、248、208、170、146 mV。当阳极活性污泥菌液体积为6 mL、玉米秸秆水解液浓度为15 g/L时,微生物燃料电池的产电性能最佳,此时MFC的功率密度为54.6 mW/m2,内阻为496 Ω。同时,循环伏安曲线(C-V)和交流阻抗曲线(EIS)测试可知,MFC的电极过程由电荷传递和扩散过程共同控制,反应过程受电子传递控制。
  • 图  1  微生物燃料电池装置图

    Figure  1  Photograph of microbial fuel cells device

    图  2  不同浓度秸秆水解液的MFCs电压输出

    Figure  2  Voltage outputs of MFCs with different concentrations of straw liquid

    图  3  不同浓度秸秆水解液的MFCs功率密度曲线

    Figure  3  Power density curves of MFCs with different concentrations of straw liquid

    图  4  不同浓度秸秆水解液的MFCs极化曲线

    Figure  4  Polarization curves of MFCs with different concentrations of straw liquid

    图  5  不同体积活性污泥菌液的MFCs电压输出

    Figure  5  Voltage outputs of MFCs with different volumes of active sludge bacteria liquid

    图  6  不同体积活性污泥菌液的MFCs功率密度曲线

    Figure  6  Power density curves of MFCs with different volumes of active sludge bacteria liquid

    图  7  不同体积活性污泥菌液的MFCs极化曲线

    Figure  7  Polarization curves of MFCs with different volumes of active sludge bacteria liquid

    图  8  阳极材料的扫描电镜照片

    Figure  8  Scanning electron microscopy images of the different anodes

    (a): not enriched; (b): enriched

    图  9  不同扫描速率的循环伏安曲线

    Figure  9  C-V curves of MFCs with different scanning rates

    图  10  微生物燃料电池的Nyquist图

    Figure  10  Nyquist diagram of microbial fuel cells

    图  11  微生物燃料电池的拟合等效电路

    Figure  11  Fitting equivalent circuit of microbial fuel cells

    表  1  MFCs运行7 d后不同浓度秸秆水解液的阳极组分分析

    Table  1  Analysis of anodic component of MFCs with different concentrations of straw liquid after running seven days

    Sample Content w/%
    total sugar yield total quality cellulose hemicellulose lignin
    10 g/L 40.1 35.2 45.3 9.3 1.8
    15 g/L 52.4 37.9 48.9 10.6 1.7
    20 g/L 46.1 35.7 44.3 12.6 1.9
    30 g/L 37.2 32.1 38.1 15.8 1.9
    40 g/L 30.7 30.2 33.3 16.2 2.1
    下载: 导出CSV
  • [1] YANG W, LOGAN B E. Immobilization of a metal-nitrogen-carbon catalyst on activated carbon with enhanced cathode performance in microbial fuel cells[J]. ChemSusChem, 2016, 9(16):2226-2232. doi: 10.1002/cssc.201600573
    [2] HE Z. Development of microbial fuel cells needs to go beyond "power density"[J]. ACS Energy Lett, 2017, 2(3):700-702. doi: 10.1021/acsenergylett.7b00041
    [3] XU L, ZHAO Y Q, DOHERTY L, HU Y S, HAO X D. The integrated processes for wastewater treatment based on the principle of microbial fuel cells:A review[J]. Crit Rev Environ Sci Technol, 2016, 46(1):60-91. doi: 10.1080/10643389.2015.1061884
    [4] AHMAD F, ATIYEH M N, PEREIRA B, STEPHANOPOULOS G N. A review of cellulosic microbial fuel cells:Performance and challenges[J]. Biomass Bioenergy, 2013, 56(56):179-188. https://www.deepdyve.com/lp/elsevier/a-review-of-cellulosic-microbial-fuel-cells-performance-and-challenges-7vgUmN8o0V
    [5] KADIER A, SIMAYI Y, KALIL M S, ABDESHAHIAN P, HAMID A A. A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas[J]. Renewable Energy, 2014, 71(11):466-472.
    [6] HASSAN S H A, KIM Y S, OH S E. Power generation from cellulose using mixed and pure cultures of cellulose-degrading bacteria in a microbial fuel cell[J]. Enzyme Microb Technol, 2012, 51(5):269-273. doi: 10.1016/j.enzmictec.2012.07.008
    [7] CATAL T, LI K, BERMEK H, LIU H. Electricity production from twelve monosaccharides using microbial fuel cells[J]. J Power Sources, 2008, 175(1):196-200. doi: 10.1016/j.jpowsour.2007.09.083
    [8] HUANG L P, ANGELIDAKI I. Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells[J]. Biotechnol Bioeng, 2008, 100(3):413-422. doi: 10.1002/(ISSN)1097-0290
    [9] ZHANG Y F, MIN B K, HUANG L P, ANGELIDAKI I. Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells[J]. Appl Environ Microbiol, 2009, 75(11):3389-3395. doi: 10.1128/AEM.02240-08
    [10] LIU R, GAO C Y, ZHAO Y G, WANG A J, LU S S, WANG M, MAQBOOL F, HUANG Q. Biological treatment of steroidal drug industrial effluent and electricity generation in the microbial fuel cells[J]. Bioresour Technol, 2012, 123:86-91. doi: 10.1016/j.biortech.2012.07.094
    [11] VELVIZHI G, GOUD R K, VENKATA MOHAN S. Anoxic bio-electrochemical system for treatment of complex chemical wastewater with simultaneous bioelectricity generation[J]. Bioresour Technol, 2014, 115(1):214-220.
    [12] ZHANG L, LI J, ZHU X, YE D D, FU Q, LIAO Q. Startup performance and anodic biofilm distribution in continuous-flow microbial fuel cells with serpentine flow fields:Effects of external resistance[J]. Ind Eng Chem Res, 2017, 56(14):3767-3774. doi: 10.1021/acs.iecr.6b04619
    [13] QUAN X C, SUN B, XU H D. Anode decoration with biogenic Pd nanoparticles improved power generation in microbial fuel cells[J]. Electrochimica Acta, 2015, 182:815-820. doi: 10.1016/j.electacta.2015.09.157
    [14] 王欢, 郭瓦力, 王洪发, 孙素荣, 张建军.玉米秸秆酸水解制糖新工艺[J].安徽农业科学, 2007, 35(35):11603-11605. doi: 10.3969/j.issn.0517-6611.2007.35.125

    WANG Huan, GUO Wa-li, WANG Hong-fa, SUN Su-rong, ZHANG Jian-jun. New technology of producing sugar by acid hydrolysis of corn straw[J]. J Anhui Agri Sci, 2007, 35(35):11603-11605. doi: 10.3969/j.issn.0517-6611.2007.35.125
    [15] 冯玉杰, 王鑫, 王赫名, 于艳玲, 李冬梅.以玉米秸秆为底物的纤维素降解菌与产电菌联合产电的可行性[J].环境科学学报, 2009, 29(11):2295-2299. http://www.cqvip.com/QK/70999X/201004/1003731038.html

    FENG Yu-jie, WANG Xin, WANG He-ming, YU Yan-ling, LI Dong-mei. Electricity generation from corn stover by cellulose degradation bacteria and exoelectrogenic bacteria[J]. J Environ Sci, 2009, 29(11):2295-2299. http://www.cqvip.com/QK/70999X/201004/1003731038.html
    [16] JABLONSKA M A, RYBARCZYK M K, LIEDER M. Electricity generation from rapeseed straw hydrolysates using microbial fuel cells[J]. Bioresource Technol, 2016, 208:117-122. doi: 10.1016/j.biortech.2016.01.062
    [17] ISMAIL Z Z, JAEEL A J. Sustainable power generation in continuous flow microbial fuel cell treating actual wastewater:influence of biocatalyst type on electricity production[J]. Sci World J, 2013, 17:713515.
    [18] 刘春梅. 阳极结构对微生物燃料电池性能影响及阳极传质特性研究[D]. 重庆: 重庆大学, 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D426552

    LIU Chun-mei. Research on the effect of anode structures on the performance of microbial fuel cells and mass transfer characteristics of anodes[D]. Chongqing: Chongqing University, 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D426552
    [19] LOGAN B E, HAMELERS B, ROZENDAL R, SCHRODER U, KELLER J, FREQUIA S, AELTERMAN P, VERSTRAETE W, RABAEY K. Microbial fuel cells:Methodology and technology[J]. Environ Sci Technol, 2006, 40(17):5181-5192. doi: 10.1021/es0605016
    [20] FRICKE K, HARNISCH F, SCHRODER U. On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells[J]. Energy Environ Sci, 2008, 1(1):144-147. doi: 10.1039/b802363h
    [21] ELMEKAWY A, HEGAB H M, DOMINGUEZ-BENETTON X, PANT D. Internal resistance of microfluidic microbial fuel cell:challenges and potential opportunities[J]. Bioresour Technol, 2013, 142:672-682. doi: 10.1016/j.biortech.2013.05.061
    [22] 曲有鹏, 高珊珊, 吕江维, 李达, 刘俊峰, 田家宇.电化学阻抗技术在微生物燃料电池阻抗测试中的应用[J].实验技术与管理, 2015, 32(7):68-70. http://www.cnki.com.cn/Article/CJFDTOTAL-SYJL201507019.htm

    QU You-peng, GAO Shan-shan, LV Jiang-wei, LI Da, LIU Jun-feng, TIAN Jia-yu. Application of electrochemical impedance spectroscopy in impedance test of microbial fuel cell[J]. Experiment Technol Manage, 2015, 32(7):68-70. http://www.cnki.com.cn/Article/CJFDTOTAL-SYJL201507019.htm
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  23
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-19
  • 修回日期:  2018-04-18
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-06-10

目录

    /

    返回文章
    返回