留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含油污泥与配合煤共热解煤焦的微观结构与气化反应特性

邹涛 朱春鹏 张瑜 林益安 刘军 杜彦学

邹涛, 朱春鹏, 张瑜, 林益安, 刘军, 杜彦学. 含油污泥与配合煤共热解煤焦的微观结构与气化反应特性[J]. 燃料化学学报(中英文), 2020, 48(2): 137-143.
引用本文: 邹涛, 朱春鹏, 张瑜, 林益安, 刘军, 杜彦学. 含油污泥与配合煤共热解煤焦的微观结构与气化反应特性[J]. 燃料化学学报(中英文), 2020, 48(2): 137-143.
ZOU Tao, ZHU Chun-peng, ZHANG Yu, LIN Yi-an, LIU Jun, DU Yan-xue. Characteristics of microstructures and gasification reactivity of co-pyrolysis coal char with oily sludge and blended coal[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 137-143.
Citation: ZOU Tao, ZHU Chun-peng, ZHANG Yu, LIN Yi-an, LIU Jun, DU Yan-xue. Characteristics of microstructures and gasification reactivity of co-pyrolysis coal char with oily sludge and blended coal[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 137-143.

含油污泥与配合煤共热解煤焦的微观结构与气化反应特性

基金项目: 

陕西省重点研发计划项目 2019GY-143

国家重点研发计划项目 2018YFB0604604

详细信息
  • 中图分类号: TQ546

Characteristics of microstructures and gasification reactivity of co-pyrolysis coal char with oily sludge and blended coal

Funds: 

The project was supported by Shaanxi Provincial Key Research and Development Program of China 2019GY-143

National Key Research and Development Project of China 2018YFB0604604

More Information
  • 摘要: 以含油污泥与配合煤为原料在850-1150 ℃热解制得焦样, 采用N2吸附-脱附和X射线衍射(XRD)分析煤焦孔隙结构及碳微晶结构, 并运用热重分析(TGA)考察热解温度和含油污泥添加量对煤焦气化反应活性的影响。结果表明, 提高热解温度和添加含油污泥能促进煤焦形成更加丰富的孔隙结构, 强化煤焦-CO2气化反应接触并抑制煤焦石墨化进程, 从而提高煤焦气化反应活性;然而, 热解温度过高或添加油泥量过多则会致使煤焦结构致密或孔隙堵塞, 气化反应活性反而降低。
  • 图  1  实验装置流程示意图

    Figure  1  A schematic diagram of the experimental apparatus

    1: N2 cylinder; 2: mass flowmeter; 3: one-way valve; 4: gas preheater; 5: high temperature reactor; 6: condenser; 7: tar tank; 8: acetone washing bottle; 9: ice bath; 10: indicator bottle; 11: wet flowmeter; 12: gas bag; 13: gas chromatography

    图  2  不同热解温度下制得煤焦的XRD谱图

    Figure  2  XRD patterns of chars at different pyrolysis temperatures

    图  3  不同油泥添加量煤焦的XRD谱图

    Figure  3  XRD patterns of chars at different DOS contents

    图  4  制焦温度对煤焦碳转化率的影响

    Figure  4  Impact of pyrolysis temperature on char carbon conversion

    图  5  污泥添加量对煤焦碳转化率的影响

    Figure  5  Impact of sludge addition on char carbon conversion

    图  6  含油污泥煤焦样品的Arrhenius曲线

    Figure  6  Arrhenius curves of char samples with and without DOS

    表  1  样品的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of samples

    Sample Proximate analysiswad/% Ultimate analysisw/%
    M A V FC Cad Had Nad Sc, ad Oad
    CYM 4.77 5.69 31.40 58.14 69.84 5.18 0.78 0.87 12.87
    QM 2.12 7.42 31.89 58.57 71.42 4.94 0.86 0.94 12.3
    JM 3.07 60.67 6.57 29.69 72.56 4.42 0.97 3.77 8.64
    DOS(105 ℃) - 12.26 80.35 7.39 64.86 8.27 0.59 2.96 11.06
    下载: 导出CSV

    表  2  含油污泥灰组成的X射线荧光光谱分析

    Table  2  Composition of solids in DOS measured by XRF

    Sample Composition w/%
    Fe2O3 SiO2 CaO Al2O3 Na2 K2O ZnO SO3 TiO2 MgO MnO
    DOS 30.24 17.05 12.56 6.78 6.38 4.27 3.35 3.08 2.01 1.54 0.79
    下载: 导出CSV

    表  3  配合煤添加含油污泥制焦煤焦的孔隙结构特性

    Table  3  Pore structure characteristics of char from pyrolysis of mixed coal loaded with oily sludge

    Sample and pyrolysis temperature BET Atotal/(m2·g-1) Pore volume vtotal/(mL·g-1) Average aperture Da/nm
    char temperature t/℃
    CQJ 850 51.204 0.0425 5.904
    DOS3 57. 142 0.0487 5.517
    DOS8 65.637 0.0512 4.246
    DOS15 64.892 0.0503 4.231
    CQJ 950 69.025 0.0472 5.036
    DOS3 74.217 0.0517 4.819
    DOS8 90.417 0.0585 4.587
    DOS15 85.057 0.0551 4.425
    CQJ 1050 81.015 0.0503 5.003
    DOS3 104.223 0.0529 4.224
    DOS8 115.453 0.0592 4.087
    DOS15 108.012 0.0576 4.425
    CQJ 1150 78.705 0.0473 4.891
    DOS3 87.227 0.0498 4.224
    DOS8 88.415 0.0517 4.087
    DOS15 70.004 0.0509 4.425
    下载: 导出CSV

    表  4  煤焦样品的动力学参数

    Table  4  Kinetic parameters of char samples

    Sample CQJ DOS3 DOS8 DOS15
    E/(kJ·mol-1) 263.22 237.04 164.02 246.42
    A 20.07 18.52 12.25 20.43
    下载: 导出CSV
  • [1] 李大尚.独立焦化企业调整产品结构, 实现扭亏为盈局面分析[J].煤化工, 2015, 43(3): 1-6. doi: 10.3969/j.issn.1005-9598.2015.03.001

    LI Da-shang. Analysis of the adjustment the product structure of the independent coking enterprises to turn losses into gains[J]. Coal Chem Ind, 2015, 43(3): 1-6. doi: 10.3969/j.issn.1005-9598.2015.03.001
    [2] 焦海丽.气化焦制备及其结构演变与反应性的内在关联[D].太原: 太原理工大学, 2019.

    JIAO Hai-li. The preparation of coke for gasification and Intrinsic correlation between its reactivity with the structural evolution[D]. Taiyuan: Taiyuan University of Technology, 2019.
    [3] 邹涛, 徐宏伟, 袁善录, 杜彦学, 戴爱军, 葛启明, 韦孙昌, 贺根良.配入低阶煤对制得气化焦气化特性的影响[J].煤炭学报, 2017, 42(S2): 512-517. http://www.cnki.com.cn/Article/CJFDTotal-MTXB2017S2029.htm

    ZOU Tao, XU Hong-wei, YUAN Shan-lu, DU Yan-xue, DAI Ai-jun, GE Qi-ming, WEI Sun-chang, HE Gen-liang. Influence of blending low-rank coals on gasification characteristics of gasification coke[J]. J China Coal Soc, 2017, 42(S2) : 512-517. http://www.cnki.com.cn/Article/CJFDTotal-MTXB2017S2029.htm
    [4] WEN C, GAO X P, XU M H. A CCSEM study on the transformation of included and excluded minerals during coal devolatilization and char combustion[J]. Fuel, 2016, 172(5): 96-104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=086b7cacb5fa991a2781214a8cf1e39d
    [5] 谢可昌.煤的结构与反应性[M].北京:科学出版社, 2002.

    XIE Ke-chang. Coal Structure and Its Reactivity[M]. Beijing: Science Press, 2002.
    [6] 余俊钦, 卫俊涛, 丁路, 郭庆华, 于广锁.生物质灰添加对无烟煤煤焦气化特性的影响[J].燃料化学学报, 2018, 46(10): 1161-1167. doi: 10.3969/j.issn.0253-2409.2018.10.002

    YU Jun-qin, WEI Jun-tao, DING Lu, GUO Qing-hua, YU Guang-suo. Effect of biomass ash addition on gasification characteristics of anthracite char[J]. J Fuel Chem Technol, 2018, 46(10): 1161-1167. doi: 10.3969/j.issn.0253-2409.2018.10.002
    [7] 樊文克, 崔童敏, 李宏俊, 常清华, 郭庆华, 于广锁, 王辅臣.碱金属碱土金属对神府煤焦气化活性的影响[J].燃料化学学报, 2016, 44(8): 897-903. doi: 10.3969/j.issn.0253-2409.2016.08.001

    FAN Wen-ke, CUI Tong-min, LI Hong-jun, CHANG Qing-hua, GUO Qing-hua, YU Guang-suo, WANG Fu-chen. Effect of AAEM on gasification reactivity of Shenfu char[J]. J Fuel Chem Technol, 2016, 44(8): 897-903. doi: 10.3969/j.issn.0253-2409.2016.08.001
    [8] 于德平, 张玉明, 杨运泉, 高士秋, 许光文.流化床中造纸黑液催化石油焦气化特性[J].石油学报(石油加工), 2013, 29(3): 438-446. doi: 10.3969/j.issn.1001-8719.2013.03.012

    YU De-ping, ZHANG Yu-ming, YANG Yun-quan, GAO Shi-qiu, XU Guang-wen. Gasification characteristics of petroleum coke catalyzed by black liquor in a fluidized bed[J]. Acta Pet Sin(Pet Process Sect), 2013, 29(3): 438-446. doi: 10.3969/j.issn.1001-8719.2013.03.012
    [9] LIU Y, GUAN Y J, ZHANG K. CO2 gasification performance and alkali/alkaline earth metals catalytic mechanism of Zhundong coal char[J]. Korean J Chem Eng, 2018, 35(4): 859-866. doi: 10.1007/s11814-017-0357-x
    [10] KOPYSCINSKI J, HABIBI R, MIMS C A, HILL J M. K2CO3 catalyzed CO2 gasification of ash-free coal: Kinetic study[J]. Energy Fuels, 2013, 27(8): 4875-4883 doi: 10.1021/ef400552q
    [11] 吴颜.炼油厂含油污泥与高硫石油焦混合制浆共气化的研究[D].上海: 华东理工大学, 2011.

    WU Yan. Research on co-sludge ability and gasification of refinery oily sludge and high sulfur petroleum coke[D]. Shanghai: East China University of Science and Technology, 2011.
    [12] 唐黎华, 朱子彬, 赵庆祥, 郑志胜, 张成芳, 马鲁铭.活性污泥作为气化用型煤粘结剂的研究Ⅱ.污泥型煤的气化特性与二次污染的考察[J].环境科学学报, 1999, 19(1): 93-97. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb199901018

    TANG Li-hua, ZHU Zi-bin, ZHAO Qing-xiang, ZHENG Zhi-sheng, ZHANG Cheng-fang, MA Lu-ming. Study on activated sludge as binder for briquette gasification II. Investigation of gasification characteristics and secondary pollution of sludge briquette[J]. Acta Sci Circum, 1999, 19(1): 93-97. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb199901018
    [13] TANNER J, KABIR K B, MVLLER M, BHATTACHARYA S. Low temperature entrained flow pyrolysis and gasification of a victorian brown coal[J]. Fuel, 2015, 154(8): 107-113. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c8b72370a0a32b3b2d5eaadd3649d7b3
    [14] WU H W. Ash formation during pulverized coal combustion and gasification at pressure[D]. Newcastle: University of Newcastle, 2000.
    [15] 刘冬冬.不定型煤基活性炭结构演变机制及调控方法研究[D].哈尔滨: 哈尔滨工业大学, 2017.

    LIU Dong-dong. Evolution mechanism and contril methods of structure in preparation of unformed activated carbons from coals[D]. Harbin: Harbin Institute of Technology, 2017.
    [16] 周军, 张海, 吕俊复, 岳光溪.高温下制焦温度对煤焦孔隙结构的影响[J].燃料化学学报, 2007, 35(2): 155-159. doi: 10.3969/j.issn.0253-2409.2007.02.005

    ZHOU Jun, ZHANG Hai, LV Jun-fu, YUE Guang-xi. Effect of pyrolysis temperature on pore structure of anthratite chars produced by high temperatures[J]. J Fuel Chem Technol, 2007, 35(2): 155-159. doi: 10.3969/j.issn.0253-2409.2007.02.005
    [17] 孟巧荣, 赵阳升, 胡耀青, 冯增朝, 于艳梅.焦煤孔隙结构形态的实验研究[J].煤炭学报, 2011, 36(3): 487-490. http://www.cnki.com.cn/Article/CJFDTotal-MTXB2017S2029.htm

    MENG Qiao-rong, ZHAO Yang-sheng, HU Yao-qing, FENG Zeng-chao, YU Yan-mei. Experimental study on pore structure and pore shape of coking coal[J]. J China Coal Soc, 2011, 36(3): 487-490. http://www.cnki.com.cn/Article/CJFDTotal-MTXB2017S2029.htm
    [18] 张肖阳, 周滨选, 安东海, 崔琳, 郑瑛, 董勇.升温速率对准东褐煤制焦特性及煤焦孔隙结构的影响[J].煤炭学报, 2019, 44(2): 604-610. http://www.cnki.com.cn/Article/CJFDTotal-MTXB201902030.htm

    ZHANG Xiao-yang, ZHOU Bin-xuan, AN Dong-hai, CUI Lin, ZHENG Ying, DONG Yong. Effect of heating rate on pyrolysis characteristics and char structure of Zhundong lignite coal[J]. J China Coal Soc, 2019, 44(2): 604-610. http://www.cnki.com.cn/Article/CJFDTotal-MTXB201902030.htm
    [19] 刘龙龙.煤的催化裂解实验与机理研究[D].杭州: 浙江大学, 2018.

    LIU Long-long. Catalytic cracking experiments and mechanism of coal[D]. Hangzhou: Zhejiang University, 2018.
    [20] FENG Z H, BAI Z Q, ZHENG H Y, ZHENG K W, HOU R R, GUO Z X, KONG L X, BAI J, LI W. Study on the pyrolysis characteristic of mild liquefaction solid product of Hami coal and CO2 gasification of its char[J]. Fuel, 2019, 84(5): 1034-1041.
    [21] ZHANG S F, WEN L Y, WANG K, ZOU C, XU J. Effects of additives on sulfur transformation, crystallite structure and properties of coke during coking of high-sulfur coal[J]. J Iron Steel Res Int, 2015, 22(10): 897-904. doi: 10.1016/S1006-706X(15)30087-X
    [22] LAURENDEAU N M. Heterogeneous kinetics of coal char gasification and combustion[J]. Prog Energy Combust Sci, 1978, 4(4): 221-270. doi: 10.1016/0360-1285(78)90008-4
    [23] LIU H, LUO C H, TOYOTA M, KATO S, UEMIYA S, KOJIMA T, TOMINAGA H. Mineral reaction and morphology change during gasification of coal in CO2 at elevated temperature[J]. Fuel, 2003, 82(5): 523-530. doi: 10.1016/S0016-2361(02)00292-2
    [24] 徐秀峰, 崔洪, 顾永达, 陈诵英, 吴东.煤焦制备条件对其气化反应性的影响[J].燃料化学学报, 1996, 24(5): 28-34.

    XU Xiu-feng, CUI Hong, GU Yong-da, CHEN Xue-ying, WU dong. The influence of coal char preparation conditions on its gasification reactivity[J]. J Fuel Chem Technol, 1996, 24(5): 28-34.
    [25] 邹晓鹏.煤与废弃物等含碳物料气化和共气化过程特性与机理研究[D].上海: 华东理工大学, 2019.

    ZOU Xiao-peng. Research on gasification/Co-gasification characteristics and mechanism of coal, waste and other carbonaceous materials[D]. Shanghai: East China University of Science and Technology, 2019.
    [26] LI P, YU Q, QIN Q, DU W. The effects of slag compositions on the coal gasification reaction in molten blast furnace slag[J]. Energy Sources, Part A, 2013, 36(1): 73-79. http://xueshu.baidu.com/usercenter/paper/show?paperid=dd82802ff177c642f522ff778f9f1d5f&site=xueshu_se&hitarticle=1
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  301
  • HTML全文浏览量:  80
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-30
  • 修回日期:  2019-12-23
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回