留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe/Al-SiO2复合金属氧化物用于燃煤烟气中汞的脱除

李扬 陈伟 赵永椿 李海龙 张军营 李杰 胡浩权

李扬, 陈伟, 赵永椿, 李海龙, 张军营, 李杰, 胡浩权. Fe/Al-SiO2复合金属氧化物用于燃煤烟气中汞的脱除[J]. 燃料化学学报(中英文), 2019, 47(12): 1409-1416.
引用本文: 李扬, 陈伟, 赵永椿, 李海龙, 张军营, 李杰, 胡浩权. Fe/Al-SiO2复合金属氧化物用于燃煤烟气中汞的脱除[J]. 燃料化学学报(中英文), 2019, 47(12): 1409-1416.
LI Yang, CHEN Wei, ZHAO Yong-chun, LI Hai-long, ZHANG Jun-ying, LI Jie, HU Hao-quan. Removal of elemental mercury from flue gas by Fe/Al-SiO2 complex[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1409-1416.
Citation: LI Yang, CHEN Wei, ZHAO Yong-chun, LI Hai-long, ZHANG Jun-ying, LI Jie, HU Hao-quan. Removal of elemental mercury from flue gas by Fe/Al-SiO2 complex[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1409-1416.

Fe/Al-SiO2复合金属氧化物用于燃煤烟气中汞的脱除

基金项目: 

国家自然科学基金 21776039

国家自然科学基金青年科学基金 51306028

中央高校基本科研业务费 DUT2018TB0

详细信息
  • 中图分类号: X701.7

Removal of elemental mercury from flue gas by Fe/Al-SiO2 complex

Funds: 

the National Natural Science Foundation of China 21776039

National Natural Science Foundation for Young Scientist of China 51306028

the Fundamental Research Funds for the Central Universities DUT2018TB0

More Information
    Corresponding author: HU Hao-quan, Tel: 0411-84986157, E-mail: hhu@dlut.edu.cn
  • 摘要: 采用不同方法制备了Fe/Al-SiO2复合金属氧化物以模拟赤泥成分,模拟烟气条件下考察其脱汞性能。结果表明,采用溶胶-凝胶法得到的复合金属氧化物在300-450 ℃具有优异的脱汞性能,其中,在350 ℃、3 h内平均脱汞率可达到94.8%。Fe2O3为Hg0的氧化提供了晶格氧和化学吸附氧;SiO2形成的硅溶胶则有利于活性组分Fe2O3的分散,增强了Hg0与活性位的接触。基本模拟烟气中存在微量HCl和NO时,Hg0脱除率接近100%;当烟气中存在0.2 mL/min、0.4 mL/min的SO2时,吸附剂的平均脱汞率分别降至90.7%、53.4%,这主要是由于SO2与Fe2O3反应生成Fe2(SO43,导致了Fe2O3的失活并抑制汞的脱除。
  • 图  1  实验装置示意图

    Figure  1  Schematic diagram of experimental device

    图  2  样品N2吸附-脱附等温线

    Figure  2  Nitrogen adsorption isotherm curves of samples prepared by different methods

    图  3  不同制备方法得到的Fe/Al-SiO2的脱汞效率

    Figure  3  Mercury removal rate of Fe/Al-SiO2 complex prepared by different methods

    图  4  吸附剂的制备方法及组分对脱汞的影响

    Figure  4  Influence of different preparation methods and components of sorbents on mercury removal

    图  5  反应温度对脱汞效率的影响

    Figure  5  Effect of reaction temperature on mercury removal

    图  6  不同气氛对脱汞效率的影响

    Figure  6  Effects of different atmospheres on mercury removal

    图  7  反应前后Fe/Al-SiO2吸附剂的H2-TPR谱图

    Figure  7  H2-TPR profiles of Fe/Al-SiO2 before and after the reaction

    图  8  SFG反应前后FAS样品O 1s、Fe 2p及Hg 4f分析

    Figure  8  O 1s, Fe 2p and Hg 4f analysis of FAS samples before and after reaction in SFG

    (a): O 1s; (b): Fe 2p; (c): Hg 4f

    图  9  SG-FAS在各气氛中反应后的Hg-TPD谱图

    Figure  9  Hg-TPD curve of SG-FAS after reaction in different atmospheres

    (a): SFG; (b): 0.01‰ HCl; (c): 0.2‰ SO2; (d): 0.2‰ NO

    表  1  不同制备方法得到的样品比表面积和孔容

    Table  1  Specific surface area and pore volume of samples prepared by different methods

    Sample Specific surface area A /(m2·g-1) Pore volume v /(cm3·g-1)
    I-FAS 46 0.215
    UI-FAS 32 0.078
    SG-FS 403 0.672
    SG-AS 370 0.861
    SG-FAS 344 0.484
    下载: 导出CSV
  • [1] UNEP. Global Mercury Assessment 2018 Review Draft: Sources, Emissions, Releases and Environmental Transport. Geneva: UNEP Chemicals Branch. 2018.
    [2] DB14/T1703, 燃煤电厂大气污染物排放标准[S].

    DB14/T1703, Standard emissions of atmospheric pollutants for coal-fired power plants[S].
    [3] YANG J, YANG Q, SUN J, LIU Q C, ZHAO D, GAO W, LIU L. Effects of mercury oxidation on V2O5-WO3/TiO2 catalyst properties in NH3-SCR process[J]. Catal Commun, 2015, 59:78-82. doi: 10.1016/j.catcom.2014.09.049
    [4] HSU C J, CHIOU H J, CHEN Y H, LIN K S, ROOD M J, HIS H C. Mercury adsorption and re-emission inhibition from actual WFGD wastewater using sulfur-containing activated carbon[J]. Environ Res, 2019, 168:319-328. doi: 10.1016/j.envres.2018.10.017
    [5] GRANITE E J, PENNLINE H W, HARGIS R A. Novel sorbents for mercury removal from flue gas[J]. Ind Eng Chem Res, 2000, 39(4):1020-1029. doi: 10.1021/ie990758v
    [6] ZHAO S L, PUDASAINEE D, DUAN Y F, GUPTA R, LIU M. A review on mercury in coal combustion process:Content and occurrence forms in coal, transformation, sampling methods, emission and control technologies[J]. Prog Energy Combust, 2019, 73:26-64. doi: 10.1016/j.pecs.2019.02.001
    [7] WANG P Y, SU S, XIANG J, CAO F, SUN L S, HU S, LEI S Y. Catalytic oxidation of Hg0 by CuO-MnO2-Fe2O3/γ-Al2O3 catalyst[J]. Chem Eng J, 2013, 225:68-75. doi: 10.1016/j.cej.2013.03.060
    [8] 郝凯辉.改性赤泥基吸附剂用于燃煤烟气中汞的脱除[D].大连: 大连理工大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10141-1017823742.htm

    HAO Kai-hui. Removal of elemental mercury from flue gas over modified red mud based sorbents[D]. Dalian: Dalian University of Technology, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10141-1017823742.htm
    [9] CAO S T, MA H J, ZHANG Y, CHEN X F, ZHANG Y F. The phase transition in Bayer red mud from China in high caustic sodium aluminate solutions[J]. Hydrometallurgy, 2013, 140:111-119. doi: 10.1016/j.hydromet.2013.09.009
    [10] KHAIRUL M A, ZANGANEH J, MOGHTADERI B. The composition, recycling and utilisation of Bayer red mud[J]. Resour Conserv Recycl, 2019, 141:483-498. doi: 10.1016/j.resconrec.2018.11.006
    [11] WANG X P, SUN T C, WU S C, CHEN C, KOU J, XU C Y. A novel utilization of Bayer red mud through co-reduction with a limonitic laterite ore to prepare ferronickel[J]. J Cleaner Prod, 2019, 216:33-41. doi: 10.1016/j.jclepro.2019.01.176
    [12] SKODRAS G, DIAMANTOPOULOU I, SAKELLAROPOULOS G P. Role of activated carbon structural properties and surface chemistry in mercury adsorption[J]. Desalination, 2007, 210(1/3):281-286. http://cn.bing.com/academic/profile?id=f781b1d179ff7b246f08f94ee79af493&encoded=0&v=paper_preview&mkt=zh-cn
    [13] KONG F H, QIU J R, LIU H, ZHAO R, AI Z H. Catalytic oxidation of gas-phase elemental mercury by nano-Fe2O3[J]. J Environ Sci (China), 2011, 23(4):699-704. doi: 10.1016/S1001-0742(10)60438-X
    [14] ZHANG A C, ZHANG Z H, SHI J M, CHEN G Y, ZHOU C S, SUN L S. Effect of preparation methods on the performance of MnOx-TiO2 adsorbents for Hg0 removal and SO2 resistance[J]. J Fuel Chem Technol, 2015, 43(10):1258-1266. doi: 10.1016/S1872-5813(15)30038-4
    [15] LIAO Y, XIONG S C, DANG H, XIAO X, YANG S J, WONG P K.The centralized control of elemental mercury emission from the flue gas by a magnetic rengenerable Fe-Ti-Mn spinel[J]. J Hazard Mater, 2015, 299:740-746. doi: 10.1016/j.jhazmat.2015.07.083
    [16] LIU T, MAN C Y, GUO X, ZHENG C G. Experimental study on the mechanism of mercury removal with Fe2O3 in the presence of halogens:Role of HCl and HBr[J]. Fuel, 2016, 173:209-216. doi: 10.1016/j.fuel.2016.01.054
    [17] KO K B, BYAN Y C, CHO M Y, NAMKUNG W, SHIN D N, KOH D J, KIM K T. Influence of HCl on oxidation of gaseous elemental mercury by dielectric barrier discharge process[J]. Chemosphere, 2008, 71(9):1674-1682. doi: 10.1016/j.chemosphere.2008.01.015
    [18] ZHANG A C, ZHENG W W, SONG J, HU S, LIU Z C, XIANG J. Cobalt manganese oxides modified titania catalysts for oxidation of elemental mercury at low flue gas temperature[J]. Chem Eng J, 2014, 236:29-38. doi: 10.1016/j.cej.2013.09.060
    [19] LIU W, XU H M, LIAO Y, QUAN Z W, LI S C, ZHAO S J, QU Z, YAN N Q. Recyclable CuS sorbent with large mercury adsorption capacity in the presence of SO2 from non-ferrous metal smelting flue gas[J]. Fuel, 2019, 235:847-854. doi: 10.1016/j.fuel.2018.08.062
    [20] GUEDES A, VALENTIM B, PRIETO A C, SANZ A, FLORES D, NORONHA F. Characterization of fly ash from a power plant and surroundings by micro-Raman spectroscopy[J]. Int J Coal Geol, 2008, 73(3/4):359-370. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=839549dab048935e88e06e3379ac5366
    [21] DONG Y, REN X Y, QU R Y, LIU S J, ZHENG C H, GAO X. Designing SO2-resistant cerium-based catalyst by modifying with Fe2O3 for the selective catalytic reduction of NO with NH3[J]. Mol Catal, 2019, 462:10-18. doi: 10.1016/j.mcat.2018.10.007
    [22] XIANG J, WANG P Y, SU S, ZHANG L Q, CAO F, SUN Z J, XIAO X, SUN L S, H U S. Control of NO and Hg0 emissions by SCR catalysts from coal-fired boiler[J]. Fuel Process Technol, 2015, 135:168-173. doi: 10.1016/j.fuproc.2014.12.044
    [23] LIU J, GUO R T, GUAN Z Z, SUN X, PAN W G, LIU X Y, WANG Z Y, SHI X, QIN H, QIU Z Z, LIU S W. Simultaneous removal of NO and Hg0 over Nb-modified MnTiOx catalyst[J]. Int J Hydrogen Energy, 2019, 44(2):835-843. doi: 10.1016/j.ijhydene.2018.11.006
    [24] KIM S C, NAHM S W, PARK Y K. Property and performance of red mud-based catalysts for the complete oxidation of volatile organic compounds[J]. J Hazard Mater, 2015, 300:104-113. doi: 10.1016/j.jhazmat.2015.06.059
    [25] HE C, SHEN B X, LI F K. Effects of flue gas components on removal of elemental mercury over Ce-MnOx/Ti-PILCs[J]. J Hazard Mater, 2016, 304:10-17. doi: 10.1016/j.jhazmat.2015.10.044
    [26] LI G L, SHEN B X, LI Y W, ZHAO B, WANG F M, HE C, WANG Y Y, ZHANG M. Removal of element mercury by medicine residue derived biochars in presence of various gas compositions[J]. J Hazard Mater, 2015, 298:162-169. doi: 10.1016/j.jhazmat.2015.05.031
    [27] CHEN Y, GUO X, WU F, HUANG Y, YIN Z C. Mechanisms of mercury transformation over α-Fe2O3 (001) in the presence of HCl and/or H2S[J]. Fuel, 2018, 233:309-316. doi: 10.1016/j.fuel.2018.06.065
    [28] JIANG S J, LIU X, LI H L, WANG J, YANG Z Q, PENG H Y, SHI K M. Synergistic effect of HCl and NO in elemental mercury catalytic oxidation over La2O3-TiO2 catalyst[J]. Fuel, 2018, 215:232-238 doi: 10.1016/j.fuel.2017.11.015
    [29] ZHENG J M, SHAH K J, ZHOU J S, PAN S Y, CHIANG P C. Impact of HCl and O2 on removal of elemental mercury by heat-treated activated carbon:Integrated X-ray analysis[J]. Fuel Process Technol, 2017, 167:11-17. doi: 10.1016/j.fuproc.2017.06.017
    [30] YANG Y J, LIU J, WANG Z, LIU F. Heterogeneous reaction kinetics of mercury oxidation by HCl over Fe2O3 surface[J]. Fuel Process Technol, 2017, 159:266-271. doi: 10.1016/j.fuproc.2017.01.035
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  26
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-14
  • 修回日期:  2019-10-17
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-12-10

目录

    /

    返回文章
    返回