留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

片状煤焦颗粒CO2气化过程中形态及结构演变特性研究

孟德喜 张可怡 杜浩宇 许建良 陈雪莉

孟德喜, 张可怡, 杜浩宇, 许建良, 陈雪莉. 片状煤焦颗粒CO2气化过程中形态及结构演变特性研究[J]. 燃料化学学报(中英文), 2018, 46(7): 787-795.
引用本文: 孟德喜, 张可怡, 杜浩宇, 许建良, 陈雪莉. 片状煤焦颗粒CO2气化过程中形态及结构演变特性研究[J]. 燃料化学学报(中英文), 2018, 46(7): 787-795.
MENG De-xi, ZHANG Ke-yi, DU Hao-yu, XU Jian-liang, CHEN Xue-li. Morphology and structure evolution of flaky char particles during CO2 gasification[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 787-795.
Citation: MENG De-xi, ZHANG Ke-yi, DU Hao-yu, XU Jian-liang, CHEN Xue-li. Morphology and structure evolution of flaky char particles during CO2 gasification[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 787-795.

片状煤焦颗粒CO2气化过程中形态及结构演变特性研究

基金项目: 

国家重点研发计划项目 2016YFB060040202

详细信息
  • 中图分类号: TQ546

Morphology and structure evolution of flaky char particles during CO2 gasification

Funds: 

the National Key Research and Development Project 2016YFB060040202

More Information
  • 摘要: 采用高温热台显微镜观测了片状煤焦颗粒CO2气化过程中的形态演变,并通过拉曼光谱分析了气化半焦的碳微晶结构,同时研究了气化温度(1000-1200℃)和煤焦初始当量直径(1.00-1.60 mm)对其CO2气化过程中的形态及结构演变的影响规律。结果表明,与反应前期相比,反应后期的颗粒收缩(面积、体积、当量直径)更加剧烈。在所研究的气化温度范围内,随着气化温度的升高,煤焦颗粒的面积收缩率和体积收缩率逐渐减小。煤焦初始粒径显著影响颗粒收缩,1100℃气化温度下,颗粒的收缩趋势在初始粒径1.30 mm处出现转折。煤焦气化过程中碳消耗主导着表观密度的变化,在所研究的温度和粒径范围内,当碳转化率达到80%时,表观密度比线性减小到0.4以下。在相同气化温度下,随着碳转化率的增加,煤焦的石墨化程度先减小后增加,无定形碳含量先增加再减小。
  • 图  1  煤焦颗粒在高温热台显微镜下的投影图像

    Figure  1  Projection image of the char particle under the high temperature stage microscope

    图  2  高温热台显微镜结构示意图

    Figure  2  Schematic diagram of in-situ heating stage microscope

    图  3  碳转化率随气化反应时间的变化

    Figure  3  Carbon conversion vs gasification time for char particle

    (a): equivalent diameter of 1.30 mm; (b): gasification temperature of 1100 ℃

    图  4  1100 ℃气化温度下煤焦颗粒在反应过程中的面积演变

    Figure  4  Area evolution of char recorded by the heating stage microscope at 1100 ℃

    图  5  气化过程中片状煤焦颗粒z投影面的面积收缩

    Figure  5  Area shrinkage of flaky char particle in CO2 gasification

    (a): equivalent diameter of 1.30 mm; (b): gasification temperature of 1100 ℃

    图  6  气化过程中片状煤焦颗粒的体积收缩

    Figure  6  Volumetric shrinkage of flaky char particle in CO2 gasification

    (a): equivalent diameter of 1.30 mm; (b): gasification temperature of 1100 ℃

    图  7  气化过程中片状煤焦颗粒当量直径比的变化

    Figure  7  Variation of equivalent diameter ratio for the flaky char particle in CO2 gasification

    (a): equivalent diameter of 1.30 mm; (b): gasification temperature of 1100 ℃

    图  8  气化过程中片状煤焦颗粒表观密度比的变化

    Figure  8  Variation of apparent density ratio for the char particle in CO2 gasification

    (a): equivalent diameter of 1.30 mm; (b): gasification temperature of 1100 ℃

    图  9  ID1/IGID3/IG随气化温度和碳转化率的变化

    Figure  9  Variation of ID1/IGID3/IG with gasification temperature and carbon conversion

    表  1  原煤和热解焦的工业分析和元素分析

    Table  1  Proximate, ultimate analysis of raw coal and pyrolysis char

    Sample Proximate analysis wd/% Ultimate analysis wd/%
    A V FC C H O* N S
    SM 5.90 34.78 59.32 79.35 5.00 8.19 1.00 0.56
    SMC 8.40 1.64 89.96 89.10 0.42 0.28 1.27 0.53
    下载: 导出CSV

    表  2  片状煤焦颗粒长、宽、高的尺寸

    Table  2  Specific dimension of length, width and height for flaky char particles

    Initial equivalent diameter /mm Length /mm Width /mm Height /mm
    1.00 1.08-1.14 0.98-1.12 0.52-0.54
    1.15 1.27-1.30 1.05-1.19 0.58-0.60
    1.30 1.49-1.53 1.26-1.35 0.58-0.62
    1.60 1.74-1.80 1.61-1.62 0.72-0.74
    下载: 导出CSV

    表  3  1100 ℃气化温度下反应前期和反应后期的比表面积对比

    Table  3  Comparison of specific surface area at the early stage and later stage of reaction

    Sample 1100 ℃-0.3 1100 ℃-0.5 1100 ℃-0.7
    ABET/(m2·g-1) 237.2 280.9 442.6
    下载: 导出CSV

    表  4  不同气化温度下碳转化率为50%的气化半焦的BET比表面积

    Table  4  BET specific surface area of gasification semi-coke with carbon conversion of 50 % at different gasification temperatures

    Sample 1000 ℃-0.5 1100 ℃-0.5 1200 ℃-0.5
    ABET /(m2·g-1) 649.2 280.9 78.3
    下载: 导出CSV
  • [1] AHMED I I, GUPTA A K. Particle size, porosity and temperature effects on char conversion[J]. Appl Energy, 2011, 88(12):4667-4677. doi: 10.1016/j.apenergy.2011.06.001
    [2] 李绍锋, 吴诗勇.高温下煤焦的碳微晶及孔结构的演变行为[J].燃料化学学报, 2010, 38(5):513-517. http://www.oalib.com/paper/4272639

    LI Shao-feng, WU Shi-yong. Evolvement behavior of carbon minicrystal and pore structure of coal chars at high temperatures[J]. J Fuel Chem Technol, 2010, 38(5):513-517. http://www.oalib.com/paper/4272639
    [3] 林善俊, 李献宇, 丁路, 周志杰, 于广锁.内蒙煤焦CO2气化过程的结构演变特性[J].燃料化学学报, 2016, 44(12):1409-1415. doi: 10.3969/j.issn.0253-2409.2016.12.001

    LIN Shan-jun, LI Xian-yu, DING Lu, ZHOU Zhi-jie, YU Guang-suo. Structure evolution characteristics of Inner Mongolia coal char during CO2 gasification[J]. J Fuel Chem Technol, 2016, 44(12):1409-1415. doi: 10.3969/j.issn.0253-2409.2016.12.001
    [4] DAI P, DENNIS J S, SCOTT S A. Using an experimentally-determined model of the evolution of pore structure for the gasification of chars by CO2[J]. Fuel, 2016, 171:29-43. doi: 10.1016/j.fuel.2015.12.041
    [5] COETZEE G H, SAKUROVS R, NEOMAGUS H W J P, MORPETH L, EVERSON R C, MATHEWS J P, BUNT J R. Pore development during gasification of South African inertinite-rich chars evaluated using small angle X-ray scattering[J]. Carbon, 2015, 95:250-260. doi: 10.1016/j.carbon.2015.08.030
    [6] COETZEE G H, SAKUROVS R, NEOMAGUS H W J P, MORPETH L, EVERSON R C, MATHEWS J P, BUNT J R. Particle size influence on the pore development of nanopores in coal gasification chars:from micron to millimeter particles[J]. Carbon, 2017, 112:37-46. doi: 10.1016/j.carbon.2016.10.088
    [7] LI S, WHITTY K J. Physical phenomena of char-slag transition in pulverized coal gasification[J]. Fuel Process Technol, 2012, 95:127-136. doi: 10.1016/j.fuproc.2011.12.006
    [8] LI T, ZHANG L, DONG L, ZHANG S, QIU P, WANG S, LI C Z. Effects of gasification temperature and atmosphere on char structural evolution and AAEM retention during the gasification of Loy Yang brown coal[J]. Fuel Process Technol, 2017, 159:48-54. doi: 10.1016/j.fuproc.2017.01.022
    [9] BAI Y, WANG Y, ZHU S, LI F, XIE K. Structural features and gasification reactivity of coal chars formed in Ar and CO2 atmospheres at elevated pressures[J]. Energy, 2014, 74:464-470. doi: 10.1016/j.energy.2014.07.012
    [10] MERMOUD F, GOLFIER F, SALVADOR S, STEENE L V, DIRION J L. Experimental and numerical study of steam gasification of a single charcoal particle[J]. Combust Flame, 2006, 145(1):59-79.
    [11] MOLINTAS H, GUPTA A K. Combustion of spherically shaped large wood char particles[J]. Fuel Process Technol, 2016, 148:332-340. doi: 10.1016/j.fuproc.2016.02.029
    [12] HAUGEN N E L, TILGHMAN M B, MITCHELL R E. The conversion mode of a porous carbon particle during oxidation and gasification[J]. Combust Flame, 2014, 161(2):612-619. doi: 10.1016/j.combustflame.2013.09.012
    [13] TILGHMAN M B, HAUGEN N E L, MITCHELL R E. A comprehensive char-particle gasification model adequate for entrained-flow and fluidized-bed gasifiers[J]. Energy Fuels, 2017, 31:2652-2662. doi: 10.1021/acs.energyfuels.6b03241
    [14] 赵英杰, 陈雪莉, 陈汉鼎, 刘海峰.稻草固定床热解过程中不同赋存状态钾的迁移转化行为[J].燃料化学学报, 2014, 42(4):427-433. http://www.ccspublishing.org.cn/article/id/100033107

    ZHAO Ying-jie, CHEN Xue-li, CHEN Han-ding, LIU Hai-feng. Transfer of potassium in different forms during pyrolysis of rice straw in a fixed bed reactor[J]. J Fuel Chem Technol, 2014, 42(4):427-433. http://www.ccspublishing.org.cn/article/id/100033107
    [15] SHEN Z, LIANG Q, XU J, ZHANG B, LIU H. In-situ experimental study of CO2 gasification of char particles on molten slag surface[J]. Fuel, 2015, 160:560-567. doi: 10.1016/j.fuel.2015.08.010
    [16] SHEN Z, LIANG Q, XU J, ZHANG B, HAN D, LIU H. In situ experimental study on the combustion characteristics of captured chars on the molten slag surface[J]. Combust Flame, 2016, 166:333-342. doi: 10.1016/j.combustflame.2016.02.002
    [17] SADEZKY A, MUCKENHUBER H, GROTHE H, NIESSNER R, PÖSCHL U. Raman microspectroscopy of soot and related carbonaceous materials:spectral analysis and structural information[J]. Carbon, 2005, 43(8):1731-1742. doi: 10.1016/j.carbon.2005.02.018
    [18] BOURAOUI Z, JEGUIRIM M, GUIZANI C, LIMOUSY L, DUPONT C, GADIOU R. Thermogravimetric study on the influence of structural, textural and chemical properties of biomass chars on CO2 gasification reactivity[J]. Energy, 2015, 88:703-710. doi: 10.1016/j.energy.2015.05.100
    [19] GUIZANI C, JEGUIRIM M, GADIOU R, SANZ F J E, SALVADOR S. Biomass char gasification by H2O, CO2 and their mixture:Evolution of chemical, textural and structural properties of the chars[J]. Energy, 2016, 112:133-145. doi: 10.1016/j.energy.2016.06.065
    [20] ESSENHIGH R H. Influence of initial particle density on the reaction mode of porous carbon particles[J]. Combust Flame, 1994, 99(2):269-279. doi: 10.1016/0010-2180(94)90131-7
    [21] HURT R H, DUDEK D R, LONGWELL J P, SAROFIM A F. The phenomenon of gasification-induced carbon densification and its influence on pore structure evolution[J]. Carbon, 1988, 26(4):433-449. doi: 10.1016/0008-6223(88)90142-X
    [22] ESSENHIGH R H, KLIMESH H E, FÖRTSCH D. Combustion characteristics of carbon:Dependence of the zone Ⅰ-zone Ⅱ transition temperature (Tc) on particle radius[J]. Energy Fuels, 1999, 13(4):826-831. doi: 10.1021/ef980241g
    [23] ALVARADO P N, CADAVID F J, SANTAMARÍA A, RUIZ W. Reactivity and structural changes of coal during its combustion in a low-oxygen environment[J]. Energy Fuels, 2016, 30(11):9891-9899. doi: 10.1021/acs.energyfuels.6b01913
    [24] CHABALALA V P, WAGNER N, POTGIETER-VERMAAK S. Investigation into the evolution of char structure using Raman spectroscopy in conjunction with coal petrography; Part 1[J]. Fuel Process Technol, 2011, 92(4):750-756. doi: 10.1016/j.fuproc.2010.09.006
    [25] ZHU X, SHENG C. Influences of carbon structure on the reactivities of lignite char reacting with CO2 and NO[J]. Fuel Process Technol, 2010, 91(8):837-842. doi: 10.1016/j.fuproc.2009.10.015
    [26] SHENG C. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007, 86(15):2316-2324. doi: 10.1016/j.fuel.2007.01.029
    [27] LIU X, ZHENG Y, LIU Z, DING H, HUANG X, ZHENG C. Study on the evolution of the char structure during hydrogasification process using Raman spectroscopy[J]. Fuel, 2015, 157:97-106. doi: 10.1016/j.fuel.2015.04.025
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  26
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-12
  • 修回日期:  2018-04-29
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-07-10

目录

    /

    返回文章
    返回