留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载CuO的Ti3+/TiO2催化剂制备及其光催化甲苯降解性能

周文君 沈伯雄 张芹 王欣怡 卢凤菊

周文君, 沈伯雄, 张芹, 王欣怡, 卢凤菊. 负载CuO的Ti3+/TiO2催化剂制备及其光催化甲苯降解性能[J]. 燃料化学学报(中英文), 2019, 47(2): 249-256.
引用本文: 周文君, 沈伯雄, 张芹, 王欣怡, 卢凤菊. 负载CuO的Ti3+/TiO2催化剂制备及其光催化甲苯降解性能[J]. 燃料化学学报(中英文), 2019, 47(2): 249-256.
ZHOU Wen-jun, SHEN Bo-xiong, ZHANG Qin, WANG Xin-yi, LU Feng-ju. Preparation of the Ti3+/TiO2 supported CuO catalyst and its photocatalytic performance in the degradation of toluene[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 249-256.
Citation: ZHOU Wen-jun, SHEN Bo-xiong, ZHANG Qin, WANG Xin-yi, LU Feng-ju. Preparation of the Ti3+/TiO2 supported CuO catalyst and its photocatalytic performance in the degradation of toluene[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 249-256.

负载CuO的Ti3+/TiO2催化剂制备及其光催化甲苯降解性能

基金项目: 

国家重点研发计划项目 2018YFB0605101

天津自然科学基金重点 18JCZDJC39800

天津科技重大专项 18ZXSZSF00040

天津市科普项目 18KPXMSF00080

唐山市科技项目 18130211A

详细信息
  • 中图分类号: X511

Preparation of the Ti3+/TiO2 supported CuO catalyst and its photocatalytic performance in the degradation of toluene

Funds: 

the National Important Research and Development Plan 2018YFB0605101

Key Project Natural Science Foundation of Tianjin 18JCZDJC39800

the Project of Science and Technology of Tianjin 18ZXSZSF00040

Tianjin Science Popularization Project 18KPXMSF00080

Tangshan Science and Technology Project 18130211A

More Information
  • 摘要: 通过在锐钛矿TiO2载体表面上负载Cu-BTC(BTC,1,3,5-苯甲酸)前驱体,还原处理制备光催化剂CuO-Ti3+/TiO2(Cu-TiMB),对其在可见光条件下气相甲苯净化催化性能进行了研究。结果表明,该改良方法制备的CuO-Ti3+/TiO2(Cu-TiMB)催化剂的活性是浸渍法所得催化剂CuO-TiO2(Cu-TiD)的2.68倍。CuO-Ti3+/TiO2(Cu-TiMB)具有更大的比表面积(147 m2/g)和较小的颗粒粒径(0.45 μm),呈现多孔状,CuO的分散度较高;催化剂表面Ti3+提供了大量的氧缺位,在400-800 nm波段的光响应能力显著增强。CuO-Ti3+/TiO2(Cu-TiMB)催化剂中Cu2+、Cu+与Ti3+形成的异质结构进一步增多了氧缺位数量,延缓e--h+的复合时间;氧缺陷增强了捕获吸附氧能力,通过金属氧化物价态变化增强化学吸附能力,提高了光催化性能。
  • 图  1  固定床流动反应装置示意图

    Figure  1  Schematic diagram of the fixed bed flow reactor

    图  2  样品的XRD谱图

    Figure  2  XRD pattern of various samples

    a: TiO2; b: Cu-TiD; c: CuBTC-Ti; d: Cu-TiM; e: Cu-TiMB

    图  3  样品的DTG (a)和DSC(b)谱图

    Figure  3  DTG (a) and DSC (b) of various samples

    a: TiO2; b: Cu-TiD; c: CuBTC-Ti; d: Cu-TiM; e: Cu-TiMB

    图  4  Cu-TiD (a), Cu-TiMB (b)扫描电镜照片和Cu-TiMB (c)的透射电镜照片

    Figure  4  SEM images of Cu-TiD (a), Cu-TiMB (b) and TEM of Cu-TiMB (c)

    图  5  样品的紫外-可见分光光谱谱图

    Figure  5  UV-vis DRS spectra of various samples

    a: TiO2; b: Cu-TiD; c: CuBTC-Ti; d: Cu-TiM; e: Cu-TiMB

    图  6  样品的荧光光谱谱图

    Figure  6  PL spectra of various samples

    a: TiO2; b: Cu-TiD; c: CuBTC-Ti; d: Cu-TiM; e: Cu-TiMB

    图  7  样品暗实验的脱除效率

    Figure  7  Efficiency of various samples in dark experiment

    图  8  样品对甲苯脱除效率的影响

    Figure  8  Toluene removal efficiency of various samples

    图  9  Cu-TiD和Cu-TiMB的稳定性实验

    Figure  9  Stability of Cu-TiD and Cu-TiMB for toluene removal upon repetitive usage

    图  10  O2浓度对催化效率的影响

    Figure  10  Effect of O2 concentration on the toluene removal efficiency over Cu-TiMB and Cu-TiD

    图  11  电子自旋共振谱图

    Figure  11  ERS curve of Cu-TiMB

    图  12  反应前后Cu-TiMB的XPS谱图

    Figure  12  XPS spectra of Cu-TiMB before and after reaction

    表  1  样品的比表面积、孔容、孔径及SEM平均颗粒粒径

    Table  1  Specific surface area, pore volume, pore size and SEM average particle size of various catalyst samples

    Sample Surface area
    A/(m2·g-1)
    Pore volume
    v/(cm3·g-1)
    Average pore
    diameter d/nm
    Particle size (SEM)
    d/μm
    TiO2 139.2 0.41 12.74 1.48
    CuBTC-Ti 191.4 0.55 11.55 3.63
    Cu-TiM 129.3 0.38 12.62 0.49
    Cu-TiMB 147.4 0.37 9.91 0.45
    Cu-TiD 109.3 0.44 16.21 1.71
    下载: 导出CSV

    表  2  Cu-TiMB反应前后元素的含量比

    Table  2  Element ratio before and after reaction of Cu-TiMB

    Sample Reaction Cu+/Cu2+ Oab/O Ov/O OL/O Ti3+/Ti4+ Ti2+/Ti3
    Cu-TiMB before 1.23 24.7 53.01 27.09 2.78 0.12
    after 1.75 10.89 62.08 23.3 3.94 0.19
    下载: 导出CSV
  • [1] YANG C, QIAN H, LI X, CHENG Y, HE H, ZENG G, XI J. Simultaneous removal of multicomponent VOCs in Biofilters[J]. Trends Biotechnol, 2018, 36(7):673-685. https://www.sciencedirect.com/science/article/pii/S0167779918300581
    [2] GREGIS G, SCHAEFER S, SANCHEZ J B, FIERRO V, BERGER F, BEZVERKHYY I, WEBER G, BELLAT J P, CELZARD A. Characterization of materials toward toluene traces detection for air quality monitoring and lung cancer diagnosis[J]. Mater Chem Phys, 2017, 192:374-382.
    [3] MAZIERSKI P, MIKOLAJCZYK A, BAJOROWICZ B, MALANKOWSKA A, ZALESKA-MEDYNSKA A, NADOLNA J. The role of lanthanides in TiO2-based photocatalysis:A review[J]. Appl Catal B:Environ, 2018, 233:301-317. https://www.sciencedirect.com/science/article/pii/S0926337318303485
    [4] TAN H, ZHAO Z, NIU M, MAO C, CAO D, CHENG D, FENG P, SUN Z. A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity[J]. Nanoscale, 2014, 6(17):10216-10223. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=db321b60c46f62d30c998e70ccfa3d1a
    [5] HU Y, DAI L, LIU D, DU W, WANG Y. Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs)[J]. Renewable Sustainable Energy Rev, 2018, 91:793-801. doi: 10.1016/j.rser.2018.04.103
    [6] LIU H, ZHANG S, LIU Y, YANG Z, FENG X, LU X, HUO F. Well-dispersed and size-controlled supported metal oxide nanoparticles derived from MOF composites and further application in catalysis[J]. Small, 2015, 11(26):3130-3134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=26de4fd065c697d88cdb51199544485d
    [7] HAIDER A J, AL ANBARI R H, KADHIM G R, SALAME C T. Exploring potential Environmental applications of TiO2 nanoparticles[J]. Energy Procedia, 2017, 119:332-345. https://www.sciencedirect.com/science/article/pii/S1876610217326711
    [8] 李远洋, 晏良宏, 江波.一种简单的提高无定形TiO2光催化活性的方法及其在增透膜中的应用[J].无机化学学报, 2018, 34(9):91701-91709. http://d.old.wanfangdata.com.cn/Periodical/wjhxxb201809014

    LI Yuan-yang, YAN Liang-hong, JIANG Bo. Simple way to enhance the photocatalytic activity and application in antireflective coatings for amorphous TiO2[J]. Chin J Inorg Chem, 2018, 34(9):91701-91709. http://d.old.wanfangdata.com.cn/Periodical/wjhxxb201809014
    [9] RAZALI M H, YUSOFF M. Highly efficient CuO loaded TiO2 nanotube photocatalyst for CO2 photoconversion[J]. Mater Lett, 2018, 221:168-171. https://www.sciencedirect.com/science/article/abs/pii/S0167577X18304646
    [10] KAUR R, KAUR A, UMAR A, ANDERSON W A, KANSAL S K. Metal organic framework (MOF) porous octahedral nanocrystals of Cu-BTC:Synthesis, properties and enhanced absorption properties[J]. Mater Res Bull, 2019, 109:124-133. https://www.sciencedirect.com/science/article/pii/S0025540818311255
    [11] CHAUDHARY R, JUNEJA H, PAGADALA R, GANDHARE N, GHARPURE M. Synthesis, characterisation and thermal degradation behaviour of some coordination polymers by using TG-DTG and DTA techniques[J]. J Saudi Chem Soc, 2015, 19(4):442-453. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004563704
    [12] COLÓN G, MAICU M, HIDALGO M C, NAVÍO J A. Cu-doped TiO2 systems with improved photocatalytic activity[J]. Appl Catal B:Environ, 2006, 67(1/2):41-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1eb37df1109c77002ca048b002ee4375
    [13] 朱鹏飞, 刘梅, 牛笛, 王斯. Cu-Fe-TiO2膨润土复合光催化剂的表征及性能[J].光谱实验室, 2013, 30(3):1277-1281. doi: 10.3969/j.issn.1004-8138.2013.03.056

    ZHU Peng-fei, LIU Mei, NIU Di, WANG Si. Characterization and property of Cu-Fe-TiO2/bentonite composite photocatalyst[J]. Chin J Spectr Lab, 2013, 30(3):1277-1281. doi: 10.3969/j.issn.1004-8138.2013.03.056
    [14] MARX S, KLEIST W, BAIKER A. Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives[J]. J Catal, 2011, 281(1):76-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e2838e6714f3af00654781940d1bfebf
    [15] LIU S, YUAN S, ZHANG Q, XU B, WANG C, HANG M, OHNO T. Fabrication and characterization of black TiO2 with different Ti3+ concentrations under atmospheric conditions[J]. J Catal, 2018, 366:282-288. doi: 10.1016/j.jcat.2018.07.018
    [16] POZAN G S, ISLEYEN M, GOKCEN S. Transition metal coated TiO2 nanoparticles:Synthesis, characterization and their photocatalytic activity[J]. Appl Catal B:Environ, 2013, 140-141:537-545. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJ0227193/
    [17] WANG B, SUN Q, LIU S, LI Y. Synergetic catalysis of CuO and graphene additives on TiO2 for photocatalytic water splitting[J]. Int J Hydrogen Energy, 2013, 38(18):7232-7240.
    [18] WANG X, LI Y, LIU X, GAO S, HUANG B, DAI Y. Preparation of Ti3+ self-doped TiO2 nanoparticles and their visible light photocatalytic activity[J]. Chin J Catal, 2015, 36(3):389-399. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb201503021
    [19] BAI Y S, CHEN S, LU L D, BAO J C. Study of degradation of photocatalytic methyl orange on nano study of degradation of photocatalytic methyl orange on nano NdxCo2-xZr2O7[J]. Adv Mater Res, 2012, 602-604:169-173.
    [20] PENG B, FENG C, LIU S, ZHANG R. Synthesis of CuO catalyst derived from HKUST-1 temple for the low-temperature NH3-SCR process[J]. Catal Today, 2018, 314:122-128. https://www.sciencedirect.com/science/article/pii/S0920586117307411
    [21] YU X, FAN X, AN L, LI Z, LIU J. Facile synthesis of Ti3+-TiO2 mesocrystals for efficient visible-light photocatalysis[J]. J Phys Chem Solids, 2018, 119:94-99. doi: 10.1016/j.jpcs.2018.03.024
    [22] LEE J, LI Z, ZHU L, XIE S, CUI X. Ti3+ self-doped TiO2 via facile catalytic reduction over Al(acac)3 with enhanced photoelectrochemical and photocatalytic activities[J]. Appl Catal B:Environl, 2018, 224:715-724. doi: 10.1016/j.apcatb.2017.10.057
    [23] YIN H, ZHU J, CHEN J, GONG J, NIE Q. MOF-derived in situ growth of carbon nanotubes entangled Ni/NiO porous polyhedrons for high performance glucose sensor[J]. Mater Lett, 2018, 221:267-270. https://www.sciencedirect.com/science/article/abs/pii/S0167577X18305275
    [24] ZENG Y, WANG T, ZHANG S, WANG Y, ZHONG Q. Sol-gel synthesis of CuO-TiO2 catalyst with high dispersion CuO species for selective catalytic oxidation of NO[J]. Appl Surf Sci, 2017, 411:227-234. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=42d6abaf1048b59d535fd5de94c09f24
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  28
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-13
  • 修回日期:  2018-10-30
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-02-10

目录

    /

    返回文章
    返回