留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

以钙钛矿型复合氧化物为前驱体构筑La-Ce氧化物修饰的Pt-Co纳米双金属催化剂及其对CO氧化的性能

张智敏 张成相 安康 刘强 张斯然 刘源

张智敏, 张成相, 安康, 刘强, 张斯然, 刘源. 以钙钛矿型复合氧化物为前驱体构筑La-Ce氧化物修饰的Pt-Co纳米双金属催化剂及其对CO氧化的性能[J]. 燃料化学学报(中英文), 2019, 47(11): 1357-1367.
引用本文: 张智敏, 张成相, 安康, 刘强, 张斯然, 刘源. 以钙钛矿型复合氧化物为前驱体构筑La-Ce氧化物修饰的Pt-Co纳米双金属催化剂及其对CO氧化的性能[J]. 燃料化学学报(中英文), 2019, 47(11): 1357-1367.
ZHANG Zhi-min, ZHANG Cheng-xiang, AN Kang, LIU Qiang, ZHANG Si-ran, LIU Yuan. Preparation of La-Ce oxide-modified platinum-cobalt nano-bimetallic catalysts with perovskite-type composite oxides as precursors and their performance in CO oxidation[J]. Journal of Fuel Chemistry and Technology, 2019, 47(11): 1357-1367.
Citation: ZHANG Zhi-min, ZHANG Cheng-xiang, AN Kang, LIU Qiang, ZHANG Si-ran, LIU Yuan. Preparation of La-Ce oxide-modified platinum-cobalt nano-bimetallic catalysts with perovskite-type composite oxides as precursors and their performance in CO oxidation[J]. Journal of Fuel Chemistry and Technology, 2019, 47(11): 1357-1367.

以钙钛矿型复合氧化物为前驱体构筑La-Ce氧化物修饰的Pt-Co纳米双金属催化剂及其对CO氧化的性能

基金项目: 

国家自然科学基金 21872101

国家自然科学基金 21576192

天津市生态环境治理科技重大专项项目 18ZXSZSF00070

详细信息
  • 中图分类号: O643

Preparation of La-Ce oxide-modified platinum-cobalt nano-bimetallic catalysts with perovskite-type composite oxides as precursors and their performance in CO oxidation

Funds: 

the Natural Science Foundation of China 21872101

the Natural Science Foundation of China 21576192

Science and Technology Program of Tianjin, China 18ZXSZSF00070

More Information
  • 摘要: 利用钙钛矿型复合氧化物(PTO)可以将多种金属离子限域并均匀混合于钙钛矿晶格中的特点,提出了一种构筑氧化物修饰的纳米双金属催化剂团簇的新构想。以担载于大比表面积SiO2上的钙钛矿型复合氧化物La1-yCeyCo0.87Pt0.13O3/SiO2作为前驱体,将La、Ce、Co和Pt多种金属离子均匀混合并限域于PTO晶粒中,还原后得到Pt-Co/La-Ce-O/SiO2催化剂;通过氮气吸附-脱附、XRD、H2-TPR和TEM等手段对Pt-Co/La-Ce-O/SiO2催化剂进行了表征,考察了其对CO氧化的催化性能,研究了构效关系。结果发现,La-Ce-O-Pt-Co构成了纳米团簇,担载于SiO2表面,形成了Pt-Co纳米双金属颗粒;Co修饰Pt提高了其催化活性,而添加Ce进一步改善了其催化性能。当Ce含量(y)为0.2时,催化剂La0.8Ce0.2Co0.87Pt0.13O3/SiO2的活性最佳,在120℃下即可实现CO完全转化,且在含体积分数15% H2O及12.5% CO2的气氛中仍具有较好的催化性能。稳定性测试表明,所制得的Pt-Co/La-Ce-O/SiO2催化剂具有良好的稳定性和抗烧结性能。
  • 图  1  不同Ce掺杂含量催化剂前驱体La1-yCeyCo0.87Pt0.13O3/SiO2的N2吸附-脱附曲线(a)和孔径分布(b)

    Figure  1  N2 adsorption-desorption isotherms (a) and pore size distribution curves (b) of the supported La1-yCeyCo0.87Pt0.13O3/SiO2 catalyst precursors with different Ce doping contents

    图  2  不同Ce掺杂量(a)负载型催化剂前驱体La1-yCeyCo0.87Pt0.13O3/SiO2和(b)非负载型催化剂La1-yCeyCo0.87Pt0.13O3, 及其(c)局部放大的XRD谱图

    Figure  2  XRD patterns of (a) the supported La1-yCeyCo0.87Pt0.13O3/SiO2 catalyst precursors; (b) and (c) unsupported La1-yCeyCo0.87Pt0.13O3 precursorsand

    a: La0.8Ce0.2Co0.87Pt0.13O3; b: La0.85Ce0.15Co0.87Pt0.13O3; c: La0.9Ce0.1Co0.87Pt0.13O3; d: La0.95Ce0.05Co0.87Pt0.13O3; e: LaCoO3

    图  3  不同Ce掺杂量催化剂前驱体La1-yCeyCo0.87Pt0.13O3/SiO2的H2-TPR谱图

    Figure  3  H2-TPR profiles of the supported La1-yCeyCo0.87Pt0.13O3/SiO2 catalyst precursors with different Ce contents

    图  4  600℃还原后的La0.8Ce0.2Co0.87Pt0.13O3/SiO2的La、Ce、Co、Pt的STEM-EDS照片和线扫描

    Figure  4  STEM-EDS mapping images of La, Ce, Co, Pt and line scanning results for the used La0.8Ce0.2Co0.87Pt0.13O3/SiO2 catalyst at 600℃: surface scan area (a); distribution of the La (b), Ce (c), Co (d), and Pt (e) elements; distribution of a combination of four elements (f); sweep path (g); elemental distribution curves along the sweep path (h)

    图  5  600℃还原后的((a), (b)) La0.8Ce0.2Co0.87Pt0.13O3/SiO2, ((c), (d)) LaCo0.87Pt0.13O3/SiO2及煅烧后未还原的((e), (f))La0.8Ce0.2Co0.87Pt0.13O3/SiO2的TEM照片

    Figure  5  TEM images of the catalysts after reduction at 600℃ ((a) and (b)) La0.8Ce0.2Co0.87Pt0.13O3/SiO2, ((c) and (d)) LaCo0.87Pt0.13O3/SiO2 and fresh ((e) and (f))La0.8Ce0.2Co0.87Pt0.13O3/SiO2

    图  6  还原后LaCo1-xPtxO3/SiO2催化剂的CO氧化性能测试

    Figure  6  Low-temperature oxidation of CO over reduced LaCo1-xPtxO3/SiO2

    at GHSV=24000mL/(gcat·h) and 0.1MPa in the gas of CO/O2/N2=1:1:98

    图  7  La1-yCeyCo0.87Pt0.13O3/SiO2中Ce掺杂量对CO氧化性能的影响

    Figure  7  CO oxidation over the La1-yCeyCo0.87Pt0.13O3/SiO2 catalysts with different Ce doping contents at GHSV=24000mL/(gcat·h) and 0.1MPa in the gas of CO/O2/N2=1:1:98

    图  8  H2O和CO2对于La0.08Ce0.02Co0.87Pt0.13O3/ SiO2的CO氧化性能的影响

    Figure  8  Effect of CO2 and H2O on the catalytic performance of La0.08Ce0.02Co0.87Pt0.13O3/SiO2 in CO oxidation

    reaction conditions: 1% CO, 1% O2, 0-12.5% CO2, 0-15% H2O (volume ratio) and balance N2the mass space velocity is 24000mL/(gcat·h)

    图  9  600℃还原后的La0.8Ce0.2Co0.87Pt0.13O3/SiO2催化剂的稳定性测试。

    Figure  9  Catalytic stability of La0.8Ce0.2Co0.87Pt0.13O3/ SiO2 reduced at 600℃ in CO oxidation reaction conditions: 400℃ and a space velocity of 24000mL/(gcat·h), with the feed of 1% CO, 1% O2(volume ratio), and balance N2

    表  1  SiO2和La1-yCeyCo0.87Pt0.13O3/SiO2的物理性质

    Table  1  Textural properties of SiO2 and the supported La1-yCeyCo0.87Pt0.13O3/SiO2 catalyst precursors

    Sample ABET/
    (m2·g-1)
    dpore
    /nm
    vpore/
    (cm3·g-1)
    SiO2 368.5 9.3 0.87
    Co:Pt=7:1 167.5 4.8 0.46
    Ce-0.05 182.3 4.9 0.36
    Ce-0.10 216.4 4.9 0.41
    Ce-0.15 220.0 4.8 0.42
    Ce-0.20 229.1 4.9 0.38
    下载: 导出CSV

    表  2  样品理论耗氢与实验耗氢对比

    Table  2  Experimental and theoretical H2 consumption values of the supported La1-yCeyCo0.87Pt0.13O3/SiO2 catalyst precursors in H2-TPR

    Sample Experimental H2 consumptiona /(μmol·g-1) Theoretical H2 consumption /(μmol·g-1)
    low temp. high temp. Pt2+→Pt0 Co3+→Co2+ Co2+→Co0
    LaCoO3 10.1 23.0 - 11.0 21.9
    Ce-0.05 11.9 19.1 2.6 9.0 17.9
    Ce-0.1 11.0 18.2 2.6 9.0 17.9
    Ce-0.15 10.0 18.9 2.6 9.0 17.9
    Ce-0.2 8.2 22.4 2.6 9.0 17.9
    a:experimental H2 consumptions calculated using CuO
    下载: 导出CSV

    表  3  近些年制备的具有代表性的催化活性良好的催化剂, 用以与本文所制备的在常压下CO氧化反应中使用的催化剂作对比

    Table  3  A comparison of current La0.8Ce0.2Co0.87Pt0.13O3/SiO2 catalyst with the representative catalysts reported in recent years in their performance for CO oxidation

    Catalyst Stability performance Ref.
    WHSV/
    (mL·g-1·h-1)
    t/
    time
    t/h
    1%Pt-ZrO2 30000 90 40 [31]
    5.0%Pt/γ-Al2O3 25000 160 112 [32]
    1%Pt/Fe2O3 96000 25 2.2 [33]
    3.32%Co/1.44%
    Pt/TiO2
    22000 45 2 [34]
    1%Pt/Ce0.8Zr0.2O2 16800 60 50a [35]
    Leached 4%
    Pt-0.3%Fe/CB
    30000 25 11 [36]
    1%Pt-Co/La2O3-
    CeO2/SiO2b
    24000 400 250 this
    work
    a: the CO conversion was maintained at 80%; b: the catalyst was obtained by reducing La0.8Ce0.2Co0.87Pt0.13O3/SiO2 at 600℃
    下载: 导出CSV
  • [1] SCHUBERT M M, HACKENBERG S, VEEN A C V, MUHLER M, PLZAK V, BEHM R J. CO oxidation over supported gold catalysts-"Inert" and "active" support materials and their role for the oxygen supply during reaction[J]. J Catal, 2001, 197(1):113-122. doi: 10.1006/jcat.2000.3069
    [2] EINAGA H, NASU Y, ODA M, SAITO H. Catalytic performances of perovskite oxides for CO oxidation under microwave irradiation[J]. Chem Eng J, 2016, 283:97-104. doi: 10.1016/j.cej.2015.07.051
    [3] NURIA L, NØRSKOV J K. Catalytic CO oxidation by a gold nanoparticle:A density functional study[J]. J Am Chem Soc, 2002, 124(38):11262-11263. doi: 10.1021/ja026998a
    [4] IMBIHL R, COX M P, ERTL G, MÜLLER H, BRENIG W. Kinetic oscillations in the catalytic CO oxidation on Pt(100):Theory[J]. J Chem Phys, 1987, 87(1):742-749. doi: 10.1001/jama.297.21.2381
    [5] CAIXIA X, JIXIN S, XIAOHONG X, PENGPENG L, HONGJUAN Z, FANG T, YI D. Low temperature CO oxidation over unsupported nanoporous gold[J]. J Am Chem Soc, 2007, 129(1):42-43. doi: 10.1021/ja0675503
    [6] KUNG H H, KUNG M C, COSTELLO C K. Supported Au catalysts for low temperature CO oxidation[J]. J Catal, 2003, 216(1/2):425-432. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_219cebef5929c1aa6cc35d6a2921a6d8
    [7] BOTAO Q, AIQIN W, XIAOFENG Y, ALLARD L F, ZHENG J, YITAO C, JINGYUE L, JUN L, TAO Z. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nat Chem, 2011, 3(8):634-641. doi: 10.1038/nchem.1095
    [8] HENDRIKSEN B L M, FRENKEN J W M. CO oxidation on Pt(110):Scanning tunneling microscopy inside a high-pressure flow reactor[J]. Phys Rev Lett, 2002, 89(4):046101. doi: 10.1103/PhysRevLett.89.046101
    [9] WANG C, LI B, LIN H, YUAN Y. Carbon nanotube-supported Pt-Co bimetallic catalysts for preferential oxidation of CO in a H2-rich stream with CO2 and H2O vapor[J]. J Power Sources, 2012, 202:200-208. doi: 10.1016/j.jpowsour.2011.11.044
    [10] XU H, FU Q, GUO X, BAO X. Architecture of Pt-Co bimetallic catalysts for catalytic CO oxidation[J]. ChemCatChem, 2012, 4(10):1645-1652. doi: 10.1002/cctc.201200255
    [11] SNYTNIKOV P V, YUSENKO K V, KORENEV S V, SHUBIN Y V, SOBYANIN V A. Co-Pt bimetallic catalysts for the selective oxidation of carbon monoxide in hydrogen-containing mixtures[J]. Kinet Catal, 2007, 48(2):276-281. doi: 10.1134/S0023158407020127
    [12] BERA P, GAYEN A, HEGDE M S, LALLA N P, ARENA F. Promoting effect of CeO2 in combustion synthesized Pt/CeO2 catalyst for CO oxidation[J]. J Phys Chem B, 2003, 107(25):6122-6130. doi: 10.1021/jp022132f
    [13] AVAKYAN L A, KOLPACHEVA N A, PARAMONOVA E V, SINGH J, HARTFELDER U, BOKHOVEN J A V, BUGAEV L A. Evolution of the atomic structure of ceria-supported platinum nanocatalysts:Formation of single layer platinum oxide and Pt-O-Ce and Pt-Ce linkages[J]. J Phys Chem C, 2016, 120(49):28057-28066. doi: 10.1021/acs.jpcc.6b09824
    [14] SURENDAR M, SAGAR T V, RAVEENDRA G, ASHWANI KUMAR M, LINGAIAH N, RAMA RAO K S, SAI PRASAD P S. Pt doped LaCoO3 perovskite:A precursor for a highly efficient catalyst for hydrogen production from glycerol[J]. Int J Hydrogen Energy, 2016, 41(4):2285-2297. doi: 10.1016/j.ijhydene.2015.12.075
    [15] ZHAO L, HAN T, WANG H, ZHANG L, LIU Y. Ni-Co alloy catalyst from LaNi1-xCoxO3 perovskite supported on zirconia for steam reforming of ethanol[J]. Appl Catal B:Environ, 2016, 187:19-29. doi: 10.1016/j.apcatb.2016.01.007
    [16] GONG D, LI S, GUO S, TANG H, WANG H, LIU Y. Lanthanum and cerium co-modified Ni/SiO2 catalyst for CO methanation from syngas[J]. Appl Surf Sci, 2018, 434:351-364. doi: 10.1016/j.apsusc.2017.10.179
    [17] SUN S, YANG L I, PANG G, FENG S. Surface properties of Mg doped LaCoO3 particles with large surface areas and their enhanced catalytic activity for CO oxidation[J]. Appl Catal A:Gen, 2011, 401(1/2):199-203. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1571118299214e235b1ad528e2f66701
    [18] LI S, TANG H, GONG D, MA Z, LIU Y. Loading Ni/La2O3 on SiO2 for CO methanation from syngas[J]. Catal Today, 2017, 297:298-307. doi: 10.1016/j.cattod.2017.06.014
    [19] THOMMES M, KANEKO K, NEIMARK A V, OLIVIER J P, RODRIGUEZ-REINOSO F, ROUQUEROL J, SING K S W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure Appl Chem, 2015, 87(9/10):1051-1069. http://cn.bing.com/academic/profile?id=90760a340a671ebad24fef1d6782ecab&encoded=0&v=paper_preview&mkt=zh-cn
    [20] LEOFANTI G, PADOVAN M, TOZZOLA G, VENTURELLI B. Surface area and pore texture of catalysts[J]. Catal Today, 1998, 41(1):207-219. http://cn.bing.com/academic/profile?id=5b77958bb4f3d40165a0ac0a0fc7ec0e&encoded=0&v=paper_preview&mkt=zh-cn
    [21] SONG Z, SHI X, NING H, LIU G, ZHONG H, YUAN L. Loading clusters composed of nanoparticles on ZrO2 support via a perovskite-type oxide of La0.95Ce0.05Co0.7Cu0.3O3 for ethanol synthesis from syngas and its structure variation with reaction time[J]. Appl Surf Sci, 2017, 405:1-12. doi: 10.1016/j.apsusc.2017.02.003
    [22] BENJARA M, REDDY M, KATTA L, THRIMURTHULU G. Novel nanocrystalline Ce1-xLaxO2-δ(x=0.2) solid solutions:Structural characteristics and catalytic performance[J]. Chem Mater, 2010, 22(2):467-475. doi: 10.1021/cm100735n
    [23] JOB N, PEREIRA M F R, LAMBERT S, CABIAC A, DELAHAY G, COLOMER J F, MARIEN J, FIGUEIREDO J L, PIRARD J P. Highly dispersed platinum catalysts prepared by impregnation of texture-tailored carbon xerogels[J]. J Catal, 2006, 240(2):160-171. doi: 10.1016/j.jcat.2006.03.016
    [24] JERMWONGRATANACHAI T, JACOBS G, MA W, SHAFER W D, GNANAMANI M K, PEI G, KITIYANAN B, DAVIS B H, KLETTLINGER J L S, YEN C H. Fischer-tropsch synthesis:Comparisons between Pt and Ag promoted Co/Al2O3 catalysts for reducibility, local atomic structure, catalytic activity, and oxidation-reduction (OR) cycles[J]. Appl Catal A:Gen, 2013, 464(6):165-180.
    [25] FANG C, ZHONG H, WEI Y, WANG J, ZHANG S, ZHANG L, LIU Y. Highly dispersed Pt species with excellent stability and catalytic performance by reducing a perovskite-type oxide precursor for CO oxidation[J]. Trans Tianjin Univ, 2018, 24(6):547-554. doi: 10.1007/s12209-018-0175-1
    [26] GONG D D, LI S S, GUO S X, TANG H G, WANG H, LIU Y. Lanthanum and cerium co-modified Ni/SiO2 catalyst for CO methanation from syngas[J]. Appl Surf Sci, 2018, 434:351-364. doi: 10.1016/j.apsusc.2017.10.179
    [27] WANG T, XING J Y, ZHU L, JIA A P, WANG Y J, LU J Q, LUO M F. CO oxidation over supported Pt/CrxFe2-xO3 catalysts and their good tolerance to CO2 and H2O[J]. Appl Catal B:Environ, 2019, 245:314-324. doi: 10.1016/j.apcatb.2018.12.054
    [28] DENG Y, WANG T, ZHU L, JIA A P, LU J Q, LUO M F. Enhanced performance of CO oxidation over Pt/CuCrOx catalyst in the presence of CO2 and H2O[J]. Appl Surf Sci, 2018, 442:613-621. doi: 10.1016/j.apsusc.2018.02.099
    [29] WANG H F, KAVANAGH R, GUO Y L, GUO Y, LU G Z, HU P. Structural origin:Water deactivates metal oxides to CO oxidation and promotes low-temperature CO oxidation with metals[J]. Angew Chem Int Ed, 2012, 51(27):6657-6661. doi: 10.1002/anie.201108981
    [30] JIN Y, SUN G, XIONG F, DING L, HUANG W. Water-activated lattice oxygen in FeO(111) islands for low-temperature oxidation of CO at Pt-FeO interface[J]. J Phys Chem C, 2016, 120(18):9845-9851. doi: 10.1021/acs.jpcc.6b02256
    [31] SINGHANIA A, GUPTA S M. Nanocrystalline ZrO2 and Pt-doped ZrO2 catalysts for low-temperature CO oxidation[J]. Beilstein J Nanotechnol, 2017, 8(1):264-271. doi: 10.3762/bjnano.8.29
    [32] AVGOUROPOULOS G, IOANNIDES T, PAPADOPOULOU C, BATISTA J, HOCEVAR S, MATRALIS H K. A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen[J]. Catal Today, 2002, 75(1/4):157-167. doi: 10.1016/S0920-5861(02)00058-5
    [33] LI S, LIU G, LIAN H, JIA M, ZHAO G, JIANG D, ZHANG W. Low-temperature CO oxidation over supported Pt catalysts prepared by colloid-deposition method[J]. Catal Commun, 2008, 9(6):1045-1049. doi: 10.1016/j.catcom.2007.10.016
    [34] EPLING W S, CHEEKATAMARLA P K, LANE A M. Reaction and surface characterization studies of titania-supported Co, Pt and Co/Pt catalysts for the selective oxidation of CO in H2 -containing streams[J]. Chem Eng J, 2003, 93(1):61-68. doi: 10.1016/S1385-8947(02)00109-2
    [35] ROH H S, POTDAR H S, JUN K W, HAN S Y, KIM J W. Low temperature selective CO oxidation in excess of H2 over Pt/Ce-ZrO2 catalysts[J]. Catal Lett, 2004, 93(3):203-207. doi: 10.1023/b:catl.0000017077.38760.1f
    [36] XU H, FU Q, YAO Y, BAO X. Highly active Pt-Fe bicomponent catalysts for CO oxidation in the presence and absence of H2[J]. Energy Environ Sci, 2012, 5(4):6313-6320. doi: 10.1039/C1EE02393D
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  32
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-11
  • 修回日期:  2019-09-17
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-11-10

目录

    /

    返回文章
    返回