留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烟煤-稻草混合焦样共气化过程协同行为机理研究

郭庆华 卫俊涛 龚岩 于广锁

郭庆华, 卫俊涛, 龚岩, 于广锁. 烟煤-稻草混合焦样共气化过程协同行为机理研究[J]. 燃料化学学报(中英文), 2018, 46(4): 399-405.
引用本文: 郭庆华, 卫俊涛, 龚岩, 于广锁. 烟煤-稻草混合焦样共气化过程协同行为机理研究[J]. 燃料化学学报(中英文), 2018, 46(4): 399-405.
GUO Qing-hua, WEI Jun-tao, GONG Yan, YU Guang-suo. Mechanism analysis of synergy behavior during blended char co-gasification of bituminous coal and rice straw[J]. Journal of Fuel Chemistry and Technology, 2018, 46(4): 399-405.
Citation: GUO Qing-hua, WEI Jun-tao, GONG Yan, YU Guang-suo. Mechanism analysis of synergy behavior during blended char co-gasification of bituminous coal and rice straw[J]. Journal of Fuel Chemistry and Technology, 2018, 46(4): 399-405.

烟煤-稻草混合焦样共气化过程协同行为机理研究

基金项目: 

国家重点研发计划 2017YFB0602601

详细信息
  • 中图分类号: TQ546

Mechanism analysis of synergy behavior during blended char co-gasification of bituminous coal and rice straw

Funds: 

National Key R & D Program of China 2017YFB0602601

More Information
    Corresponding author: YU Guang-suo, Tel: 021-64252974, Fax: 021-64251312, E-mail: gsyu@ecust.edu.cn
  • 摘要: 基于热重分析仪考察了神府烟煤焦、稻草焦和神府烟煤-稻草混合焦样气化反应活性及共气化过程协同行为。并借助电感耦合等离子体发射光谱仪和扫描电子显微镜-能谱仪联用装置探讨了共气化过程活性矿物组分的迁移转化特性,以关联解释共气化协同行为演变。结果表明,与煤焦单独气化相比,稻草焦掺混有利于提高煤焦整体气化反应活性。混合焦样共气化过程协同行为随碳转化率的提高呈先逐渐减弱的抑制作用,达到某一碳转化率(记为转折碳转化率)后呈不断增强的协同促进作用,且转折碳转化率随气化温度升高而提高。神府烟煤-稻草混合焦样共气化过程协同行为演变主要归因于共气化过程活性K和Ca转化特性的共同影响。神府烟煤-稻草混合焦样共气化整体协同行为呈协同促进作用,并随气化温度的升高而减弱。
  • 图  1  自由下落式快速热解装置示意图

    Figure  1  Schematic diagram of free-fall rapid pyrolysis reactor

    1: N2 cylinder; 2: temperature controlling system; 3: fixed bed reactor; 4: sample basket; 5: condensing unit; 6: washing unit; 7: filter unit; 8: cumulative flow meter; 9: water-cooling jacket

    图  2  气化反应活性曲线

    Figure  2  Gasification reactivity curves of RS-800P (a), SF-800P (b) and SF:RS-1:1-800P (c)

    (800-gasification at 800 ℃, cal-calculated gasification reactivity curve)

    图  3  混合焦样共气化过程协同因子变化

    Figure  3  Synergy index variations during blended char co-gasification

    图  4  共气化过程不同转化率的活性AAEM相对转化率

    Figure  4  Relative transformation ratio of active AAEM at different co-gasification conversions

    图  5  焦样及气化半焦的电镜照片

    Figure  5  SEM photos of chars and gasification semi-chars

    (SF:RS-1:1-800P-50%-SF represents SF particles in semi-char (conversion, 50%) of SF:RS-1:1-800P gasified at 900 ℃)

    表  1  样品的工业分析、元素分析和灰熔融温度

    Table  1  Proximate analysis, ultimate analysis and ash fusion temperature of tested samples

    Sample Proximate analysis wd/% Ultimate analysis wd /% Ash fusion temperature t/℃
    V FC A C H N O S DT ST HT FT
    SF 35.42 58.29 6.29 79.14 2.32 1.12 10.36 0.77 1152 1167 1175 1179
    RS 75.05 15.35 9.60 44.08 6.24 1.13 38.57 0.38 1198 1257 1290 1380
    下载: 导出CSV

    表  2  样品的灰组成

    Table  2  Ash composition of tested samples

    Sample Ash composition w/%
    SiO2 Al2O3 K2O Na2O CaO Fe2O3 MgO
    SF 33.36 12.44 0.67 1.73 27.78 9.11 1.34
    RS 58.88 0.18 21.97 1.13 4.20 0.26 2.73
    下载: 导出CSV

    表  3  焦样气化反应活性指数

    Table  3  Gasification reactivity index of char samples

    Sample R0.9/min-1
    800 ℃ 850 ℃ 900 ℃ 950 ℃
    SF-800P 0.003 0.011 0.030 0.067
    RS-800P 0.008 0.022 0.052 0.115
    SF:RS-1:1-800P 0.006 0.019 0.044 0.087
    下载: 导出CSV

    表  4  焦样及混合焦样气化半焦中活性AAEM含量

    Table  4  Active AAEM content in chars and gasification semi-chars of blended char

    Sample Element content /(mg·g-1) (raw char/blended char)
    active K-exp active K-cal active Ca-exp active Ca-cal
    RS-800P 38.80 - 6.36 -
    SF-800P 0.12 - 35.38 -
    SF:RS-1:1-800P 11.72 - 26.67 -
    SF:RS-1:1-800P-10% 7.84 10.72 12.61 14.71
    SF:RS-1:1-800P-30% 7.46 7.70 12.22 14.30
    SF:RS-1:1-800P-50% 6.42 1.84 12.01 14.08
    SF:RS-1:1-800P-70% 4.19 0.76 11.66 13.86
    SF:RS-1:1-800P-90% 1.75 0.31 10.96 13.50
    note: SF:RS-1:1-800P-x% represents semi-char (conversion, x%) of SF:RS-1:1-800P
    下载: 导出CSV

    表  5  神府煤焦及混合焦样气化半焦中神府煤焦颗粒表面元素组成

    Table  5  Elemental composition of the particle surface of SF-800P and SF gasification semi-char of SF:RS-1:1-800P

    Sample Elemental composition /%
    C O Si K K/Si
    RS-800P-epidermis 19.50 44.29 33.21 0.78 0.02
    RS-800P-ground tissue 88.81 8.53 0.36 1.04 2.89
    SF-800P 86.38 6.57 0.26 0.09 0.35
    SF:RS-1:1-800P-50%-SF 78.49 11.64 0.46 0.83 1.80
    下载: 导出CSV
  • [1] 王辅臣, 于广锁, 龚欣, 刘海峰, 王亦飞, 周志杰, 陈雪莉.大型煤气化技术的研究与发展[J].化工进展, 2009, 28(2):173-180. doi: 10.3969/j.issn.1008-4800.2015.09.056

    WANG Fu-chen, YU Guang-suo, GONG Xin, LIU Hai-feng, WANG Yi-fei, ZHOU Zhi-jie, CHEN Xue-li. Research and development of large-scale coal gasification technology[J]. Chem Ind Eng Prog, 2009, 28(2):173-180. doi: 10.3969/j.issn.1008-4800.2015.09.056
    [2] 任海君, 张永奇, 房倚天, 王洋.煤焦与生物质焦共气化反应特性研究[J].燃料化学学报, 2012, 40(2):143-148. http://rlhxxb.sxicc.ac.cn/CN/Y2012/V40/I02/143

    REN Hai-jun, ZHANG Yong-qi, FANG Yi-tian, WANG Yang. Co-gasification properties of coal char and biomass char[J]. J Fuel Chem Technol, 2012, 40(2):143-148. http://rlhxxb.sxicc.ac.cn/CN/Y2012/V40/I02/143
    [3] RIZKIANA J, GUAN G Q, WIDAYATNO W B, HAO X G, HUANG W, TSUTSUMI A, ABUDULA A. Effect of biomass type on the performance of co-gasification of low rank coal with biomass at relatively low temperatures[J]. Fuel, 2014, 134:414-419. doi: 10.1016/j.fuel.2014.06.008
    [4] 陈鸿伟, 杨新, 韩悦, 赵振虎.制焦条件对稻秆与大同烟煤共气化特性影响的实验研究[J].热能动力工程, 2017, 32(8):94-99. http://mall.cnki.net/magazine/magadetail/RNWS201708.htm

    CHEN Hong-wei, YANG Xin, HAN Yue, ZHAO Zhen-hu. Experimental study on the influence of pyrolysis condition on co-gasification characteristics of rice straw and Datong bituminous coal[J]. J Eng Therm Energ Power, 2017, 32(8):94-99. http://mall.cnki.net/magazine/magadetail/RNWS201708.htm
    [5] ZHANG Y, ZHENG Y, YANG M J, SONG Y C. Effect of fuel origin on synergy during co-gasification of biomass and coal in CO2[J]. Bioresour Technol, 2016, 200:789-794. doi: 10.1016/j.biortech.2015.10.076
    [6] DING L, ZHANG Y Q, WANG Z Q, HUANG J J, FANG Y T. Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char[J]. Bioresour Technol, 2014, 173:11-20. doi: 10.1016/j.biortech.2014.09.007
    [7] HABIBI R, KOPYSCINSKI J, MASNADI M S, LAM J, GRACE J R, MIMS C A, HILL J M. Co-gasification of biomass and non-biomass feedstocks:Synergistic and inhibition effects of switchgrass mixed with sub-bituminous coal and fluid coke during CO2 gasification[J]. Energy Fuels, 2012, 27:494-500. https://www.researchgate.net/publication/263656626_Co-gasification_of_Biomass_and_Non-biomass_Feedstocks_Synergistic_and_Inhibition_Effects_of_Switchgrass_Mixed_with_Sub-bituminous_Coal_and_Fluid_Coke_During_CO2_Gasification
    [8] 邱朋华, 杜昌帅, 刘栗.热解酸洗煤焦结构特性以及与其反应性关系研究[J].煤炭学报, 2017, 42(S1):233-239. http://mall.cnki.net/magazine/magadetail/MTXB2017S1.htm

    QIU Peng-hua, DU Chang-shuai, LIU Li. Structural characteristics of char derived from acid-washed coal pyrolysis and its corrections with char reactivity[J]. J China Coal Soc, 2017, 42(S1):233-239. http://mall.cnki.net/magazine/magadetail/MTXB2017S1.htm
    [9] CHEN H D, CHEN X L, QIAO Z, LIU H F. Release and transformation characteristics of K and Cl during straw torrefaction and mild pyrolysis[J]. Fuel, 2016, 167:31-39. doi: 10.1016/j.fuel.2015.11.059
    [10] KANG K, AZARGOHAR R, DALAI A K, WANG H. Hydrogen production from lignin, cellulose and waste biomass via supercritical water gasification:Catalyst activity and process optimization study[J]. Energy Convers Manage, 2016, 117:528-537. doi: 10.1016/j.enconman.2016.03.008
    [11] MARCHAND D J, SCHNEIDER E, WILLIAMS B P, JOO Y L, KIM J, KIM G T, KIM S H. Physical and chemical changes of coal during catalytic fluidized bed gasification[J]. Fuel Process Technol, 2015, 130:292-298. doi: 10.1016/j.fuproc.2014.10.039
    [12] GIL M V, RIAZA J, ÁLVAREZ L, PEVIDA C, RUBIERA F. Biomass devolatilization at high temperature under N2 and CO2:Char morphology and reactivity[J]. Energy, 2015, 91:655-662. doi: 10.1016/j.energy.2015.08.074
    [13] HUO W, ZHOU Z J, CHEN X L, DAI Z H, YU G S. Study on CO2 gasification reactivity and physical characteristics of biomass, petroleum coke and coal chars[J]. Bioresour Technol, 2014, 159:143-149. doi: 10.1016/j.biortech.2014.02.117
    [14] MA Z, BAI J, LI W, BAI Z Q, KONG L X. Mineral transformation in char and its effect on coal char gasification reactivity at high temperatures, Part 1:Mineral transformation in char[J]. Energy Fuels, 2013, 27:4545-4554. doi: 10.1021/ef4010626
    [15] 向银花, 王洋, 张建民, 董众兵, 李斌.煤焦气化过程中比表面积和孔容积变化规律及其影响因素研究[J].燃料化学学报, 2002, 30(2):108-112. http://d.wanfangdata.com.cn/Periodical_rlhxxb200202003.aspx

    XIANG Yin-hua, WANG Yang, ZHANG Jian-min, DONG Zhong-bing, LI Bin. Study on structural properties and their affecting factors during gasification of chars[J]. J Fuel Chem Technol, 2002, 30(2):108-112. http://d.wanfangdata.com.cn/Periodical_rlhxxb200202003.aspx
    [16] LI S, WHITTY K J. Physical phenomena of char-slag transition in pulverized coal gasification[J]. Fuel Process Technol, 2012, 95(2):127-136. https://www.sciencedirect.com/science/article/pii/S0378382011004176
    [17] 张凯, 汤达祯, 陶树, 刘彦飞, 陈世达.不同变质程度煤吸附能力影响因素研究[J].煤炭科学技术, 2017, 45(5):192-197. http://www.cnki.com.cn/Article/CJFDTotal-MKKC201501006.htm

    ZHANG Kai, TANG Da-zhen, TAO Shu, LIU Yan-fei, CHEN Shi-da. Study on influence factors of adsorption capacity of different metamorphic degree coals[J]. Coal Sci Technol, 2017, 45(5):192-197. http://www.cnki.com.cn/Article/CJFDTotal-MKKC201501006.htm
    [18] OKUNO T, SONOYAMA N, HAYASHI J, LI C Z, SATHE C, CHIBA T. Primary release of alkali and alkaline earth metallic species during the pyrolysis of pulverized biomass[J]. Energy Fuels, 2005, 19:2164-2171. doi: 10.1021/ef050002a
    [19] LU X C, LI F C, WASTON A T. Adsorption measurements in devomianshales[J]. Fuel, 1995, 74:599-603. doi: 10.1016/0016-2361(95)98364-K
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  41
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-15
  • 修回日期:  2018-03-01
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-04-10

目录

    /

    返回文章
    返回