留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于低温浆态床二甲醚水蒸气重整制氢的水解组分γ-Ga2O3的制备与表征

王东升 张素玲 魏磊 卢艳红 景学敏

王东升, 张素玲, 魏磊, 卢艳红, 景学敏. 用于低温浆态床二甲醚水蒸气重整制氢的水解组分γ-Ga2O3的制备与表征[J]. 燃料化学学报(中英文), 2018, 46(6): 666-672.
引用本文: 王东升, 张素玲, 魏磊, 卢艳红, 景学敏. 用于低温浆态床二甲醚水蒸气重整制氢的水解组分γ-Ga2O3的制备与表征[J]. 燃料化学学报(中英文), 2018, 46(6): 666-672.
WANG Dong-sheng, ZHANG Su-ling, WEI Lei, LU Yan-hong, JING Xue-min. Preparation and characterization of hydrolysis component γ-Ga2O3 for hydrogen production by low temperature steam reforming of dimethyl ether in slurry reactor[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 666-672.
Citation: WANG Dong-sheng, ZHANG Su-ling, WEI Lei, LU Yan-hong, JING Xue-min. Preparation and characterization of hydrolysis component γ-Ga2O3 for hydrogen production by low temperature steam reforming of dimethyl ether in slurry reactor[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 666-672.

用于低温浆态床二甲醚水蒸气重整制氢的水解组分γ-Ga2O3的制备与表征

基金项目: 

国家自然科学基金 51502125

河北省科技计划项目 13214606

廊坊师范学院科学研究项目 LSZB201007

详细信息
  • 中图分类号: O643;TQ426

Preparation and characterization of hydrolysis component γ-Ga2O3 for hydrogen production by low temperature steam reforming of dimethyl ether in slurry reactor

Funds: 

National Natural Science Foundation of China 51502125

Science and Technology Planning Project of Hebei Province, China 13214606

Scientific Research Project of Langfang Normal University LSZB201007

More Information
    Corresponding author: WANG Dong-sheng, Tel: 13383678421,E-mail: wds0701@163.com
  • 摘要: 以有机溶剂均匀沉淀法制备了镓的氧化物,借助XRD、NH3-TPD、TEM和BET等手段对物相结构、表面性质等进行了表征。结果表明,制备过程中得到的前驱体为GaOOH,前驱体经500 ℃热处理后得到γ-Ga2O3γ-Ga2O3的晶格类型与γ-Al2O3相似,为有阳离子缺陷的立方尖晶石结构。表面具有酸量较大的中强酸中心,而弱酸中心含量相对较少。微观上大多为厚10 nm、直径100 nm左右的二维纳米片,大部分纳米片分布于一个方向,一些组成花瓣形。将制得的γ-Ga2O3用于DME水解反应,结果表明,270 ℃下DME的转化率可达24%,接近平衡转化率,反应后催化剂的织构性质没有显著变化,比表面积仍可达到130 m2/g。将γ-Ga2O3与Cu基催化剂复合后用于270 ℃下的低温浆态床DME水蒸气重整反应,DME转化率和H2选择性高达99%和68%,经200 h反应后催化剂仍能保持95%以上的活性,表现出良好的工业化应用前景。
  • 图  1  前驱体与焙烧后催化剂的XRD谱图

    Figure  1  XRD patterns of precursor and calcined catalyst

    a: precursor; b: calcined catalyst

    图  2  γ-Al2O3γ-Ga2O3的NH3-TPD谱图

    Figure  2  NH3-TPD profiles of γ-Al2O3 and γ-Ga2O3

    图  3  γ-Ga2O3催化剂的TEM照片

    Figure  3  TEM image of the γ-Ga2O3

    图  4  γ-Al2O3γ-Ga2O3上DME水解性能比较

    Figure  4  Comparison of DME conversions over γ-Al2O3 and γ-Ga2O3 in the hydrolysis of DME

    图  5  γ-Ga2O3在DME水蒸气重整反应中的催化性能

    Figure  5  Catalytic performance of the γ-Ga2O3 in DME steam reforming

    表  1  催化剂的织构性质

    Table  1  Texture properties of the catalyst

    Catalyst ABET/
    (m2·g-1)
    Pore diameter
    d/nm
    Pore volume
    v/ (cm3·g-1)
    Fresh γ-Ga2O3 131.2 8.24 0.46
    Used γ-Ga2O3 128.7 8.13 0.45
    下载: 导出CSV
  • [1] FABI V, NICOLI M V D, SPIGLIANTINI G, CORGNATI S P. Insights on pro-environmental behavior towards post-carbon society[J]. Energy Procedia, 2017, 134:462-469. doi: 10.1016/j.egypro.2017.09.604
    [2] ABBASI T, PREMALATHA M, ABBASI S A. The return to renewables:Will it help in global warming control[J]. Renewable Sustainable Energy Rev, 2011, 15(1):891-894. doi: 10.1016/j.rser.2010.09.048
    [3] KIRSCHKE S, NEWIG J, VÖLKER J, BORCHARDT D. Does problem complexity matter for environmental policy delivery? How public authorities address problems of water governance[J]. J Environ Manage, 2017, 196:1-7. doi: 10.1016/j.jenvman.2017.02.068
    [4] FOLEY D K, REZAI A, TAYLOR L. The social cost of carbon emissions:Seven propositions[J]. Econom Lett, 2013, 121(1):90-97. doi: 10.1016/j.econlet.2013.07.006
    [5] SOUCHE I, CHATALIC A, BREGEON B G. Hydrogen combustion characteristics, its performances as a clean fuel compared to fossil fuel ones[J]. Int J Hydrogen Energy, 1988, 13(5):299-310. doi: 10.1016/0360-3199(88)90054-7
    [6] WINTER C J. Hydrogen energy-Abundant, efficient, clean:A debate over the energy-system-of-change[J]. Int J Hydrogen Energy, 2009, 34(14):S1-S52. doi: 10.1016/j.ijhydene.2009.05.063
    [7] BICELLI L P. Hydrogen:A clean energy source[J]. Int J Hydrogen Energy, 1986, 11(9):555-562. doi: 10.1016/0360-3199(86)90121-7
    [8] SEMELSBERGER T A, BORUP R L, GREENE H L. Dimethyl ether (DME) as an alternative fuel[J]. J Power Sources, 2006, 156(2):497-511. doi: 10.1016/j.jpowsour.2005.05.082
    [9] SEMELSBERGER T A, BORUP R L. Thermodynamic equilibrium calculations of hydrogen production from the combined processes of dimethyl ether steam reforming and partial oxidation[J]. J Power Sources, 2006, 155(2):340-352. doi: 10.1016/j.jpowsour.2005.04.031
    [10] FAUNGNAWAKIJ K, VIRIYA-EMPIKUL N, TANTHAPANICHAKOON W. Evaluation of the thermodynamic equilibrium of the autothermal reforming of dimethyl ether[J]. Int J Hydrogen Energy, 2011, 36(10):5865-5874. doi: 10.1016/j.ijhydene.2011.02.027
    [11] GALVITA V V, SEMIN G L, BELYAEV V D, YURIEVA T M, SOBYANIN V A. Production of hydrogen from dimethyl ether[J]. Appl Catal A:Gen, 2001, 216(1):85-90.
    [12] SOBYANIN V A, CAVALLARO S, FRENI S. Dimethyl ether steam reforming to feed molten carbonate fuel cells[J]. Appl Catal A:Gen, 2000, 14(6):1139-1142. https://www.deepdyve.com/lp/elsevier/hydrogen-production-for-fuel-cells-via-steam-reforming-of-dimethyl-YGTaZ3islM
    [13] 冯冬梅. 二甲醚重整制氢催化反应过程的研究[D]. 北京: 清华大学, 2008.

    FENG Dong-mei. Research on the catalytic process of hydrogen production from dimethyl ether reforming[D]. Beijing: Tsinghua University, 2008.
    [14] SEMELSBERGER T A, OTT K C, BORUP R L, GREENE H L. Role of acidity on the hydrolysis of dimethyl ether (DME) to methanol[J]. Appl Catal B:Environ, 2005, 61(3/4):281-287. https://www.sciencedirect.com/science/article/pii/S0926337305002687?_escaped_fragment_=
    [15] SEMELSBERGER T A, OTT K C, BORUP R L, GREENE H L. Generating hydrogen-rich fuel-cell feeds from dimethyl ether (DME) using Cu/Zn supported on various solid-acid substrates[J]. Appl Catal A:Gen, 2006, 309(2):210-223. doi: 10.1016/j.apcata.2006.05.009
    [16] YANG M, MEN Y, LI S L, CHEN G W. Enhancement of catalytic activity over TiO2-modified Al2O3 and ZnO-Cr2O3 composite catalyst for hydrogen production via dimethyl ether steam reforming[J]. Appl Catal A:Gen, 2012, 433-434(31):26-34.
    [17] 李娟, 海航, 闫常峰, 胡蓉蓉, 么志伟, 罗伟民, 郭常青, 李文博.焙烧温度对二甲醚水蒸气重整制氢Cu/ZnO/Al2O3/Cr2O3+H-ZSM-5双功能催化剂性能的影响[J].燃料化学学报, 2012, 40(10):1240-1245. http://rlhxxb.sxicc.ac.cn/CN/Y2012/V40/I10/1240

    LI Juan, HAI Hang, YAN Chang-feng, HU Rong-rong, YAO Zhi-wei, LUO Wei-min, GUO Chang-qing, LI Wen-bo. Effect of calcination temperature on properties of Cu/ZnO/Al2O3/Cr2O3+H-ZSM-5 bi-functional catalysts for steam reforming of dimethyl ether[J]. J Fuel Chem Technol, 2012, 40(10):1240-1245. http://rlhxxb.sxicc.ac.cn/CN/Y2012/V40/I10/1240
    [18] 贺建平, 张磊, 陈琳, 杨占旭, 佟宇飞. CeO2改性Cu/Zn-Al水滑石衍生催化剂对甲醇水蒸气重整制氢性能的影响[J].高等学校化学学报, 2017, 38(10):1822-1828.

    HE Jian-ping, ZHANG Lei, CHEN Lin, YANG Zhan-xu, TONG Yu-fei, Effect of CeO2 on Cu/Zn-Al catalysts derived from hydrotalcite precursor for methanol steam reforming[J]. Chem J Chin Univ, 2017, 38(10):1822-1828.
    [19] 王东升, 谭猗生, 韩怡卓, 椿范立.浆态床合成二甲醚复合催化剂失活原因探索[J].燃料化学学报, 2008, 36(2):176-180. http://rlhxxb.sxicc.ac.cn/EN/Y2008/V36/I02/176

    WANG Dong-sheng, TAN Yi-sheng, HAN Yi-zhuo, Noritatsu TSUBAKI. Study on deactivation of hybrid catalyst for dimethyl ether synthesis in slurry reactor[J]. J Fuel Chem Technol, 2008, 36(2):176-180. http://rlhxxb.sxicc.ac.cn/EN/Y2008/V36/I02/176
    [20] 高志华, 黄伟, 李俊芳, 阴丽华, 谢克昌.以拟薄水铝石为铝源制备浆态床二甲醚合成催化剂[J].高等学校化学学报, 2009, 30(3):534-538. http://cdmd.cnki.com.cn/Article/CDMD-10112-2008131185.htm

    GAO Zhi-hua, HUANG Wei, LI Jun-fang, YIN Li-hua, XIE Ke-chang. Liquid-phase preparation of DME slurry catalysts using pseudo-boehmite as aluminum source[J]. Chem J Chin Univ, 2009, 30(3):534-538. http://cdmd.cnki.com.cn/Article/CDMD-10112-2008131185.htm
    [21] FAUNGNAWAKIJ K, FUKUNAGA T, KIKUCHI R, EGUCHI K. Deactivation and regeneration behaviors of copper spinel-alumina composite catalysts in steam reforming of dimethyl ether[J]. J Catal, 2008, 256(1):37-44. doi: 10.1016/j.jcat.2008.02.022
    [22] TENG Y, SONG L X, PONCHEL A, YANG Z K, XIA J. Self-assembled metastable γ-Ga2O3 nanoflowers with hexagonal nanopetals for solar-blind photodetection[J]. Adv Mater, 2014, 26(36):6238-6243. doi: 10.1002/adma.201402047
    [23] NAKATANI T, WATANABE T, TAKAHASHI M, MIYAHARA Y, DEGUCHI H, IWAMOTO S, KANAI H, INOUE M. Characterization of γ-Ga2O3-Al2O3 prepared by solvothermal method and its performance for methane-SCR of NO[J]. J Phys Chem A, 2009, 113(25):7021-7029. doi: 10.1021/jp901569s
    [24] PLAYFORD H Y, HANNON A C, TUCKER M G, DAWSON D M, ASHBROOK S E, KASTIBAN R J, SLOAN J, WALTON R I. Characterisation of structural disorder in γ-Ga2O3[J]. J Phys Chem C, 2014, 118(29):16188-16198. doi: 10.1021/jp5033806
    [25] 杨锡尧.固体催化剂的研究方法-第十三章程序升温技术(下)[J].石油化工, 2002, 31(1):63-73. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_syhg200201017

    YANG Xi-yao. Methods for the investigation of solid catalyst-Chapter 13, Temperature programming analytical technique (Part 2)[J]. Petrochem Technol, 2002, 31(1):63-73. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_syhg200201017
    [26] 周迎春, 李昊, 张启俭, 马畅.二甲醚蒸汽重整制氢PdZn系催化剂[J].石油学报(石油加工), 2011, 27(4):537-542. http://cdmd.cnki.com.cn/Article/CDMD-10141-1013197470.htm

    ZHOU Ying-chun, LI Hao, ZHANG Qi-jian, MA Chang. PdZn-based catalysts for steam reform ing of dimethyl ether[J]. Acta Pet Sin (Pet Process), 2011, 27(4):537-542. http://cdmd.cnki.com.cn/Article/CDMD-10141-1013197470.htm
    [27] 寇素原, 王晓蕾, 任克威, 潘相敏, 林瑞, 马建新.二甲醚水蒸气重整制氢过程的热力学分析[J].天然气化工, 2009, 34(1):35-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyjxxb201309001

    KOU Su-yuan, WANG Xiao-lei, REN Ke-wei, PAN Xiang-min, LI Rui, MA Jian-xin. Thermodynamic analysis of hydrogen production from dimethyl ether steam reforming[J]. Nat Gas Chem Ind, 2009, 34(1):35-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyjxxb201309001
    [28] TAKEISHI K, AKAIKE Y. Hydrogen production by dimethyl ether steam reforming over copper alumina catalysts prepared using the sol-gel method[J]. Appl Catal A:Gen, 2016, 510:20-26. doi: 10.1016/j.apcata.2015.09.027
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  28
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-23
  • 修回日期:  2018-04-26
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-06-10

目录

    /

    返回文章
    返回