留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

增容剂对煤直接液化残渣改性沥青低温性能的影响

季节 李辉 王佳妮 索智 许鹰

季节, 李辉, 王佳妮, 索智, 许鹰. 增容剂对煤直接液化残渣改性沥青低温性能的影响[J]. 燃料化学学报(中英文), 2019, 47(8): 925-933.
引用本文: 季节, 李辉, 王佳妮, 索智, 许鹰. 增容剂对煤直接液化残渣改性沥青低温性能的影响[J]. 燃料化学学报(中英文), 2019, 47(8): 925-933.
JI Jie, LI Hui, WANG Jia-ni, SUO Zhi, XU Ying. Effect of compatibilizer on low-temperature performances of modified asphalts from direct coal liquefaction residue[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 925-933.
Citation: JI Jie, LI Hui, WANG Jia-ni, SUO Zhi, XU Ying. Effect of compatibilizer on low-temperature performances of modified asphalts from direct coal liquefaction residue[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 925-933.

增容剂对煤直接液化残渣改性沥青低温性能的影响

基金项目: 

国家自然科学基金 51778038

北京市自然基金委-北京市教委联合资助项目 KZ201910016017

长江学者和创新团队发展计划资助项目 IRT-17R06

市属高校基本科研业务费项目-ZC重大重点科研支撑专项-ZC05科研创新团队建设计划 X18259

详细信息
  • 中图分类号: U414

Effect of compatibilizer on low-temperature performances of modified asphalts from direct coal liquefaction residue

Funds: 

the National Natural Science Foundation of China 51778038

Beijing Natural Science Foundation Committee-Beijing Municipal Education Commission KZ201910016017

Yangtse Rive Scholar and Innovation Team Development Plan IRT-17R06

Fundamental Research Business Expenses of Municipal Universities-ZC Major Key Scientific Research Support Projects-ZC05 Scientific Research and Innovation Team Building Plan X18259

More Information
  • 摘要: 为了评价不同增容剂对煤直接液化残渣改性沥青低温性能的影响,首先,通过正交实验确定出三种增容剂(硅烷偶联剂、苯甲醛、二甲苯)各自的最佳掺量及掺入方式;其次,采用双边缺口拉伸(DENT)试验评价加入三种增容剂后沥青的低温抗延性断裂性能;最后,结合SEM照片并利用Image Pro plus图像处理软件计算加入三种增容剂后沥青中煤直接液化残渣的分散面积比,以定量地表征三种增容剂对煤直接液化残渣改性沥青低温性能的改善效果。结果表明,加入适量增容剂在一定程度上有助于煤直接液化残渣在沥青中的分散,提高两者之间的相容性,保持煤直接液化残渣改性沥青体系的长期稳定状态,避免因煤直接液化残渣的沉淀聚集而在相界面产生应力集中,增强煤直接液化残渣改性沥青的低温抗延性断裂性能。三种增容剂对煤直接液化残渣改性沥青低温性能改善效果不同,硅烷偶联剂最优,次之为苯甲醛,最差为二甲苯。
  • 图  1  DCLR改性沥青制备工艺

    Figure  1  Preparation technology of DCLR modified asphalt

    图  2  三个指标随因素和水平的变化

    Figure  2  Change of three indicators over factors and levels

    (a): 10 ℃ ductility; (b): 25 ℃ penetration; (c): softenig point

    图  3  不同韧带宽度的荷载-位移图

    Figure  3  Load-displacement diagrams under different ductility band widths

    (a): benzaldehyde-direct coal liquefaction residue modified asphalt; (b): silane coupling agents-direct coal liquefaction residue modified asphalt; (c): xylene-direct coal liquefaction residue modified asphalt; (d): direct coal liquefaction residue modified asphalt

    图  4  达到最大屈服荷载时间

    Figure  4  Time to reach the maximum yield load

    note: direct coal liquefaction residue modified asphalt with different kinds of compatibilizers in the figure is expressed as "the name of compatibilizer-DCLR", the same below

    图  5  不同韧带宽度的最大屈服荷载

    Figure  5  Maximum yield load under different ductility band widths

    图  6  最大屈服荷载下降为零的时间

    Figure  6  Time to decrease the maximum yield load to zero

    图  7  不同DCLR改性沥青的CTOD值

    Figure  7  CTOD value of different DCLR modified asphalts

    图  8  不同DCLR改性沥青扫描电镜照片

    Figure  8  Scanning electron microscopy of different DCLR modified asphalts

    (a): direct coal liquefaction residue modified asphalt; (b): benzaldehyde-direct coal liquefaction residue modified asphalt; (c): xylene-direct coal liquefaction residue modified asphalt; (d): silane coupling agents-direct coal liquefaction residue modified asphalt

    图  9  DCLR在不同沥青中的分散面积比

    Figure  9  Dispersion area ratios for DCLR in different asphalts

    表  1  Shell-90及DCLR的基本性能

    Table  1  Physical properties of Shell-90 and DCLR

    Properties Penetration at 25 ℃,
    100 g, 5s (0.1mm)
    Ductility, 10 ℃,
    5 cm/min(cm)
    Softening
    point t/℃
    Four component w/%
    saturates aromatics asphaltenes resins
    Shell-90 81.4 45.1 82.5 10.2 48.1 10.2 31.5
    DCLR 6 2.3 169 0.8 4.4 80.2 14.6
    下载: 导出CSV

    表  2  增容剂的基本性质

    Table  2  Physical properties of compatibilizers

    Index Benzaldehyde Silane coupling agents Xylene
    Character colorless liquid colorless liquid colorless liquid
    Boiling point t/℃ 179 190 144.4
    Density ρ/(g·mL-1) 1.042 0.950 0.860
    Refractive index(n20/D) 1.5455 1.045 1.494
    下载: 导出CSV

    表  3  正交实验设计表

    Table  3  Orthogonal experimental design

    Level/Factor Types of compatibilizers /A Dosage /B Shearing time /C
    1 silane coupling agents 0.5% 90 min
    2 xylene 1.0% 45 min
    3 benzaldehyde 1.5% 0 min
    4 - 2.0% -
    下载: 导出CSV

    表  4  正交实验方案

    Table  4  Orthogonal experiment scheme

    Number Types of compatibilizers/A Dosage /B Shearing time /C Combination
    1 silane coupling agents 0.5% 90 min A1B1C1
    2 silane coupling agents 1.0% 45 min A1B2C2
    3 silane coupling agents 1.5% 0 min A1B3C3
    4 silane coupling agents 2.0% 90 min A1B4C1
    5 xylene 0.5% 45 min A2B1C2
    6 xylene 1.0% 90 min A2B2C1
    7 xylene 1.5% 45 min A2B3C2
    8 xylene 2.0% 0 min A2B4C3
    9 benzaldehyde 0.5% 0 min A3B1C3
    10 benzaldehyde 1.0% 0 min A3B2C3
    11 benzaldehyde 1.5% 90 min A3B3C1
    12 benzaldehyde 2.0% 45 min A3B4C2
    下载: 导出CSV

    表  5  正交实验结果分析

    Table  5  Orthogonal experiment results analysis

    Properties Types of compatibilizers/A Dosage /B Shearing time /C
    Ductility, 10 ℃, 5 cm/min K1 12.00 8.10 9.35
    K2 9.40 10.83 14.40
    K3 12.20 12.03 9.85
    K4 - 13.83 -
    range R 2.80 5.73 5.05
    correction R 2.91 4.47 5.25
    best combination A3B4C2
    Penetration at 25 ℃, 100 g, 5 s K1 60.43 54.40 53.53
    K2 67.05 57.60 73.63
    K3 57.40 63.57 57.73
    K4 - 70.93 -
    range R 9.65 16.53 20.10
    correction R 10.04 12.88 20.90
    best combination A2B4C2
    Softenig point K1 48.90 51.14 50.10
    K2 48.45 48.88 47.16
    K3 49.22 48.30 49.31
    K4 - 47.10 -
    range R 3.500 4.667 2.633
    correction R 0.80 3.15 3.06
    best combination A3B3C2
    下载: 导出CSV
  • [1] ELLIOT M A. Chemistry of Coal Utilization (Second Supplementary Volume)[M]. New York:John Wiley and Sons, Inc, 1981.
    [2] ZHENG L Z, WANG X H, ZHANG T S, ZHENG C H. Research progress in utilizations of coal liquefaction residues[C]//IEEE. 2011 International Conference on Materials for Renewable Energy and Environment. New York: IEEE. 2011: 1627-1630.
    [3] PATEL P. China and south africa pursue coal liquefaction[J]. MRS Bulletin, 2012, 37(3):204-205. doi: 10.1557/mrs.2012.64
    [4] 赖世熘, 陈学连, 盛英.一种用于从煤直接液化残渣中分离沥青烯、前沥青烯和重质油的离子液复合萃取剂[P].

    CN: 201010614927. (LAI Shi-liu, CHEN Xue-lian, SHENG Ying. An ionic liquid extractant used to separate asphaltenes, asphaltenes and heavy oils from direct coal liquefaction residue[P]. CN: 201010614927.
    [5] ADACHI Y, NAKAMIZ M. Chemical structure of pyridine soluble matter of coal liquefaction residue[J]. J Japan Inst Energy, 1993, 72(10):930-934. doi: 10.3775/jie.72.930
    [6] SUGANO M, IKEMIZU R, MASHIMO K. Effects of the oxidation pretreatment with hydrogen peroxide on the hydrogenolysis reactivity of the coal liquefaction residue[J]. Fuel Process Technol, 2002, 77/78(1):67-73. doi: 10.1016-S0378-3820(02)00066-8/
    [7] RATHBONE R F, HOWER J C, DERBYSHIRE F J. The application of fluorescence microscopy to coal-derived characterization[J]. Fuel, 1993, 72(8):1177-1185. doi: 10.1016/0016-2361(93)90328-Y
    [8] 王寨霞, 杨建丽, 刘振宇.煤直接液化残渣对道路沥青改性作用的初步评价[J].燃料化学学报, 2007, 35(1):109-112. doi: 10.3969/j.issn.0253-2409.2007.01.021

    WANG Zhai-xia, YANG Jian-li, LIU Zhen-yu. Preliminary evaluation of direct coal liquefaction residue modification effect on road asphalt[J]. J Fuel Chem Technol, 2007, 35(1):109-112. doi: 10.3969/j.issn.0253-2409.2007.01.021
    [9] JI J, ZHAO Y S, XU S F. Study on properties of the Blends with Direct Coal Liquefaction Residue and Asphalt[C]//Materials Science, Civil Engineering and Architecture Science, Mechanical Engineering and Manufacturing Technology, ICAEMAS 2014. Xi'an, China, 2014. USA: Trans Tech Publication Inc, 2014: 316-321.
    [10] 季节, 石越峰, 索智, 徐世法, 杨松, 李鹏飞. DCLR与TLA共混改性沥青的性能对比[J].燃料化学学报, 2015, 43(9):1061-1067. doi: 10.3969/j.issn.0253-2409.2015.09.006

    JI Jie, SHI Yue-feng, SUO Zhi, XU Shi-fa, YANG Song, LI Peng-fei. Comparison on properties of modified asphalt blended with DCLR and TLA[J]. J Fuel Chem Technol, 2015, 43(9):1061-1067. doi: 10.3969/j.issn.0253-2409.2015.09.006
    [11] JI J, YAO H, YANG X, XU Y, SUO Z, YOU Z P. Performance analysis of direct coal liquefaction residue (DCLR) and Trinidad lake asphalt (TLA) for the purpose of modifying tradition alasphalt[J]. Arabian J Sci Engineer, 2016, 41(10):3983-3993. doi: 10.1007/s13369-016-2034-5
    [12] 何亮.煤液化残渣复合改性沥青制备及其性能研究[D].西安: 长安大学, 2013.

    HE Liang. Research on preparation and properties of direct coal liquefaction residue modified asphalt[D]. Xi'an: Chang'an University, 2013.
    [13] 苏曼曼, 张洪亮, 张永平, 张增平. SBS与沥青相容性及力学性能的分子动力学模拟[J].长安大学学报(自然科学版), 2017, 37(3):24-32. doi: 10.3969/j.issn.1671-8879.2017.03.004

    SU Man-man, ZHANG Hong-liang, ZHANG Yong-ping, ZHANG Zeng-ping. Miscibility and mechniclanical properties of SBS and asphalt blends based on molecular dynamics simulation[J]. J Chang'an Univ (Nat Sci Ed), 2017, 37(3):24-32. doi: 10.3969/j.issn.1671-8879.2017.03.004
    [14] 刘克非, 邓林飞, 郑佳宇, 蒋康.废旧轮胎橡胶粉改性沥青结合料相容性评价研究[J].新型建筑材料, 2017, 44(5):13-16. doi: 10.3969/j.issn.1001-702X.2017.05.004

    LIU Ke-fei, DENG Lin-fei, ZHENG Jia-yu, JIANG Kang. Compatibility evaluation of waste tire rubber power modified asphalt binder[J]. New Build Mater, 2017, 44(5):13-16. doi: 10.3969/j.issn.1001-702X.2017.05.004
    [15] 李款, 潘友强, 张辉, 陈李峰, 张健.钢桥面铺装用环氧沥青相容性研究进展[J].材料导报, 2018, 32(9):1534-1540. http://d.old.wanfangdata.com.cn/Periodical/cldb201809020

    LI Kuan, PAN Yong-qiang, ZHANG Hui, CHEN Li-feng, ZHANG Jian. Research progress of compatibility of epoxy asphalt for steel deck pvement[J]. Mater Rev, 2018, 32(9):1534-1540. http://d.old.wanfangdata.com.cn/Periodical/cldb201809020
    [16] 陈静, 孙鸣, 代晓敏, 姚一, 刘媛媛, 贺敏, 吕波, 赵香龙, 马晓讯.基于苯甲醛交联剂的煤直接液化残渣改性石油沥青[J].燃料化学学报, 2015, 43(9):1052-1060. doi: 10.3969/j.issn.0253-2409.2015.09.005

    CHEN Jing, SUN Ming, DAI Xiao-min, YAO Yi, LIU Yuan-yuan, HE Min, LÜ Bo, ZHAO Xiang-long, MA Xiao-xun. Asphalt modification with direct coal liquefaction residue based on benzaldehyde crosslinking agent[J]. J Fuel Chem Technol, 2015, 43(9):1052-1060. doi: 10.3969/j.issn.0253-2409.2015.09.005
    [17] 曹卫东, 刘树堂.硅烷偶联剂对橡胶沥青性能的影响[J].建筑材料学报, 2009, 12(4):497-500. doi: 10.3969/j.issn.1007-9629.2009.04.026

    CHAO Wei-dong, LIU Shu-tang. Effect of silane coupling agent on properties of asphalt-rubber(AR)binders[J]. J Build Mater, 2009, 12(4):497-500. doi: 10.3969/j.issn.1007-9629.2009.04.026
    [18] 苏达根, 张京锋, 何娟.硅烷偶联剂改性乳化沥青的性能研究[J].广州化工, 2006, (3):32-34. doi: 10.3969/j.issn.1001-9677.2006.03.014

    SU Da-gen, ZHANG Jing-feng, HE Juan. Study on the function of emulsified asphalt modified by silance coupling[J]. Guangzhou Chem Ind, 2006, (3):32-34. doi: 10.3969/j.issn.1001-9677.2006.03.014
    [19] 范芸珠.煤直接液化残渣性质及应用的探索性研究[D].上海: 华东理工大学. 2011.

    FAN Yun-zhu. Exploratory study on properties and application of coal direct liquefaction residue[D]. Shanghai: East China University of Science and Technology, 2011.
    [20] 陈松, 裴晓光, 刘荣博. SBS改性沥青低温性能评价方法[J].山东化工, 2018, 47(9):49-50+52 doi: 10.3969/j.issn.1008-021X.2018.09.020

    CHEN Song, PEI Xiao-guang, LIU Rong-bo. Evaluation method of low temperature performance of SBS modified asphalt[J]. Shandong Chem Ind, 2018, 47(9):49-50+52. doi: 10.3969/j.issn.1008-021X.2018.09.020
    [21] COTTERELL B, REDDEL J K.The essential work of plane stress ductile fracture[J]. Inter J Fract, 1977, 13(3):267-277. doi: 10.1016-0020-7403(93)90051-U/
    [22] ANDRIESCU A, HESP S, YOUTCHEFF J S. Essential and Plastic Works of Ductile Fracture in Asphalt Binders[M]. 2004.
    [23] ZHOU F, MOGAWER W, LI H, ANDRIESCU A, COPELAND A. Evaluation of fatigue tests for characterizing asphalt binders[J]. J Mater Civ Eng, 2013, 25(5):610-617. doi: 10.1061/(ASCE)MT.1943-5533.0000625
    [24] TABATABAEE H, CLOPOTEL C, ARSHADI A. Critical problems with using the asphalt ductility test as a performance index for modified binders[J]. Transportation Research Record:Journal of the Transportation Research Board, 2013(2370):84-91. http://cn.bing.com/academic/profile?id=a7ee47ab1d48834cccde814794ffb75b&encoded=0&v=paper_preview&mkt=zh-cn
    [25] PALIUKAITE M, ASSURAS M, SILVA S C, DING H, GOTAME Y, NIE Y, UBAID I, HESP S A M. Implementation of the double-edge-notched tension test for asphalt cement acceptance[J]. Trans Dev Eco, 2017, 3(1):6. doi: 10.1007/s40890-017-0034-0
    [26] PALIUKAITE M, ASSURAS M, HESP S A M. Effect of recycled engine oil bottoms on the ductile failure properties ofstraight and polymer-modified asphalt cements[J]. Constr Build Mater, 2016, 126:190-196. doi: 10.1016/j.conbuildmat.2016.08.156
    [27] SINGH D, GIRIMATH S. Influence of RAP sources and proportions on fracture and low temperature cracking performance of polymer modified binder[J]. Constr Build Mater, 2016, 120:10-18. doi: 10.1016/j.conbuildmat.2016.05.094
    [28] AASHTO TP 113-15, Standard Method of Test for Determination of Asphalt Binder Resistance to Ductile Failure Using Double-Edge-Notched Tension (DENT) Test[S]. Washington, 2015.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  25
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-08
  • 修回日期:  2019-06-05
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-08-10

目录

    /

    返回文章
    返回