留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

褐煤水热提质改善水煤浆的成浆性、流变性和稳定性的实验研究

吴君宏

吴君宏. 褐煤水热提质改善水煤浆的成浆性、流变性和稳定性的实验研究[J]. 燃料化学学报(中英文), 2019, 47(3): 271-278.
引用本文: 吴君宏. 褐煤水热提质改善水煤浆的成浆性、流变性和稳定性的实验研究[J]. 燃料化学学报(中英文), 2019, 47(3): 271-278.
WU Jun-hong. Hydrothermal dewatering of lignite to improve the slurry-ability, rheology, and stability of coal-water slurry[J]. Journal of Fuel Chemistry and Technology, 2019, 47(3): 271-278.
Citation: WU Jun-hong. Hydrothermal dewatering of lignite to improve the slurry-ability, rheology, and stability of coal-water slurry[J]. Journal of Fuel Chemistry and Technology, 2019, 47(3): 271-278.

褐煤水热提质改善水煤浆的成浆性、流变性和稳定性的实验研究

详细信息
  • 中图分类号: TQ536

Hydrothermal dewatering of lignite to improve the slurry-ability, rheology, and stability of coal-water slurry

More Information
  • 摘要: 采用水热法对小龙潭褐煤进行提质处理,从煤质特性、含氧基团、表面亲水性和粒度分布等因素,探究了水热提质对褐煤水煤浆成浆浓度、流变特性以及稳定性的影响。结果表明,水热提质脱除了褐煤中的水分,氧含量降低,煤阶升高。水热提质脱除了褐煤中含氧基团,煤水表面接触角增大,褐煤表面亲水性得到改善。小龙潭褐煤颗粒粒度呈现双峰分布,水热提质后褐煤颗粒粒径减小且趋于规则。水热提质改善了水煤浆的成浆性能,成浆浓度由提质前的44.09%,最高可提升到61.94%。在相近的表观黏度下,水热提质后水煤浆的稠度系数K减小,流变指数n增大,水热提质在降低浆体黏度的同时,仍保持假塑性流体特征。水热提质降低水煤浆的析水率,延缓了浆体出现硬沉淀的时间,改善浆体的稳定性。水热提质从理化特性对褐煤进行深度改性,从而获得高浓度,假塑性以及稳定性良好的符合工业应用的水煤浆。
  • 图  1  水热反应系统装置示意图

    Figure  1  Schematic of the hydrothermal reaction system

    图  2  原煤及水热提质煤C(1s)的XPS谱图

    Figure  2  XPS spectra (C 1s) of raw and hydrothermally dewatered coals

    图  3  煤样接触角与氧含量的关联

    Figure  3  Relationship between contact angle and oxygen content in coal during HTD upgrading

    图  4  原煤及水热提质煤的粒径分布

    Figure  4  Particle-size distribution of raw and hydrothermally dewatered coals

    图  5  水热提质前后褐煤的黏度-浓度特性

    Figure  5  Viscosity-concentration dependence of coal water slurry before and after HTD upgrading

    图  6  水煤浆的表观黏度-剪切速率关系曲线

    Figure  6  Dependence between apparent viscosity and shear rate

    图  7  水煤浆的剪切应力-剪切速率关系曲线

    Figure  7  Dependence between shear stress and shear rate

    图  8  水热提质前后褐煤水煤浆的析水率

    Figure  8  Water separation ratio of coal water slurry before and after HTD upgrading

    表  1  原煤和水热提质煤的煤质分析

    Table  1  Coal property analyses of raw coal and hydrothermally dewatered coals

    Sample Proximate analysis wad/% Qb, ad
    /(MJ·kg-1)
    Ultimate analysis wd/% O/C
    atomic ratio
    M A V FC C H N O St
    Raw coal 16.44 12.12 39.09 32.35 18.15 56.00 3.64 1.49 22.05 2.32 29.5
    HTD-200 11.26 13.70 38.24 36.80 20.59 59.05 3.76 1.71 17.76 2.28 22.6
    HTD-250 9.30 14.60 36.48 39.62 21.98 60.83 3.84 1.78 15.19 2.26 18.7
    HTD-300 6.21 15.65 34.83 43.31 23.28 63.96 4.14 1.86 11.14 2.21 13.1
    下载: 导出CSV

    表  2  原煤与水热提质煤的官能团相对百分含量

    Table  2  Relative contents of different functional groups in raw and upgraded coals

    Sample Content w/%
    C-C/C-H C-O C=O O=C- O
    284.8 eV 286.1 eV 287.5 eV 289.0 eV
    Raw coal 64.52 25.26 6.37 3.85
    HTD-200 67.88 22.37 6.29 3.26
    HTD-250 71.30 20.84 5.61 2.25
    HTD-300 76.95 16.53 4.64 1.88
    下载: 导出CSV

    表  3  原煤及水热提质煤的粒径参数

    Table  3  Parameters of particle diameter in raw and hydrothermally dewatered coals

    Sample Parameters of particle diameter /μm
    Dmean D10 D50 D90
    Raw coal 50.57 5.28 38.25 116.8
    HTD-200 39.84 4.07 27.61 95.82
    HTD-250 33.20 3.68 23.00 78.54
    HTD-300 30.07 3.42 20.93 68.90
    下载: 导出CSV

    表  4  水热提质前后褐煤的定黏浓度

    Table  4  Fixed-viscosity concentration of coal water slurry before and after HTD upgrading

    Sample Raw coal HTD-200 HTD-250 HTD-300
    Fixed-viscosity
    concentration/%
    44.09 55.42 58.96 61.94
    下载: 导出CSV

    表  5  水热提质前后褐煤水煤浆的流变特性参数

    Table  5  Parameters of rheological property for coal water slurry before and after HTD upgrading

    Sample ηc/(mPa·s) K/(Pa·s) n R2
    Raw coal 990.5 7.05 0.568 0.999
    HTD-200 1022.0 4.25 0.675 0.993
    HTD-250 1019.0 3.80 0.716 0.987
    HTD-300 987.1 2.59 0.803 0.994
    下载: 导出CSV
  • [1] 白向飞.中国褐煤及低阶烟煤利用与提质技术开发[J].煤质技术, 2010, (6):9-11. doi: 10.3969/j.issn.1007-7677.2010.06.003

    BAI Xiang-fei. Discussion on utilization and development of improving quality technology of lignite and low rank bituminous coal in China[J]. Coal Qual Technol, 2010, (6):9-11. doi: 10.3969/j.issn.1007-7677.2010.06.003
    [2] WILLSON W G, WALSH D A N, IRWINC W. Overview of low-rank coal (LRC) drying[J]. Coal Prep, 1997, 18(1/2):1-15. doi: 10.1080/07349349708905135
    [3] 虞育杰, 刘建忠, 王传成, 胡亚轩, 周俊虎, 岑可法.低阶煤脱水提质技术发展现状[J].热力发电, 2011, 40(9):1-4. doi: 10.3969/j.issn.1002-3364.2011.09.001

    YU Yu-jie, LIU Jian-zhong, WANG Chuan-cheng, HU Ya-xuan, ZHOU Jun-hu, CEN Ke-fa. Status quo of development in dewatering for upgrading low rank coal[J]. Therm Power Gener, 2011, 40(9):1-4. doi: 10.3969/j.issn.1002-3364.2011.09.001
    [4] 张大洲, 卢文新, 陈风敬, 夏吴, 左静, 王志刚, 商宽祥.褐煤干燥水分回收利用及其研究进展[J].化工进展, 2016, 35(2):472-478. http://d.old.wanfangdata.com.cn/Periodical/hgjz201602021

    ZHANG Da-zhou, LU Wen-xin, CHEN Feng-jing, XIA Wu, ZUO Jing, WANG Zhi-gang, SHANG Kuan-xiang. Recent developments in recovery and utilization of water and heat from lignite dewatering[J]. Chem Ind Eng Prog, 2016, 35(2):472-478. http://d.old.wanfangdata.com.cn/Periodical/hgjz201602021
    [5] YU J, TAHMASEBI A, HAN Y, YIN F, LI X. A review on water in low rank coals:The existence, interaction with coal structure and effects on coal utilization[J]. Fuel Process Technol, 2013, 106:9-20. doi: 10.1016/j.fuproc.2012.09.051
    [6] 王传成, 刘建忠, 虞育杰, 罗炉林, 程军, 周俊虎, 岑可法.内蒙古褐煤的成浆特性[J].中国电机工程学报, 2010, 30(S1):85-90. http://d.old.wanfangdata.com.cn/Thesis/Y2507859

    WANG Chuan-cheng, LIU Jian-zhong, YU Yu-jie, LUO Lu-lin, CHENG Jun, ZHOU Jun-hu, CEN Ke-fa. Slurryability of coal water slurry prepared by Inner Mongolia brown coal[J]. Proc CSEE, 2010, 30(S1):85-90. http://d.old.wanfangdata.com.cn/Thesis/Y2507859
    [7] WU J, LIU J, YUAN S, ZHANG X, LIU Y, WANG Z, ZHOU J. Sulfur transformation during hydrothermal dewatering of low rank coal[J]. Energy Fuels, 2015, 29(10):6586-6592. doi: 10.1021/acs.energyfuels.5b01258
    [8] YU Y, LIU J, CEN K. Properties of coal water slurry prepared with the solid and liquid products of hydrothermal dewatering of brown coal[J]. Ind Eng Chem Res, 2014, 53(11):4511-4517. doi: 10.1021/ie5000592
    [9] MORIMOTO M, NAKAGAWA H, MIURA K. Low rank coal upgrading in a flow of hot water[J]. Energy Fuels, 2009, 23(9):4533-4539. doi: 10.1021/ef9004412
    [10] NONAKA M, HIRAJIMA T, SASAKI K. Upgrading of low rank coal and woody biomass mixture by hydrothermal treatment[J]. Fuel, 2011, 90(8):2578-2584. doi: 10.1016/j.fuel.2011.03.028
    [11] LIU J, WU J, ZHU J, WANG Z, ZHOU J, CEN K. Removal of oxygen functional groups in lignite by hydrothermal dewatering:An experimental and DFT study[J]. Fuel, 2016, 178:85-92. doi: 10.1016/j.fuel.2016.03.045
    [12] UMAR D F, SANTOSO B, USUI H. The effect of upgrading processes on combustion characteristics of berau coal[J]. Energy Fuels, 2007, 21(6):3385-3387. doi: 10.1021/ef070061j
    [13] LIU M, LI J, DUAN Y. Effects of solvent thermal treatment on the functional groups transformation and pyrolysis kinetics of Indonesian lignite[J]. Energy Convers Manage, 2015, 103:66-72. doi: 10.1016/j.enconman.2015.06.047
    [14] 葛立超, 张彦威, 应芝, 王智化, 周俊虎, 岑可法.水热处理对我国典型褐煤气化特性的影响[J].中国电机工程学报, 2013, 33(32):14-20. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201332018

    GE Li-chao, ZHANG Yan-wei, YING Zhi, WANG Zhi-hua, ZHOU Jun-hu, CEN Ke-fa. Influence of the hydrothermal dewatering on the gasification characteristics of typical Chinese lignite[J]. Proc CSEE, 2013, 33(32):14-20. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201332018
    [15] GE L, ZHANG Y, XU C, WANG Z, ZHOU J, CEN K. Influence of the hydrothermal dewatering on the combustion characteristics of Chinese low-rank coals[J]. Appl Therm Eng, 2015, 90:174-181. doi: 10.1016/j.applthermaleng.2015.07.015
    [16] 宋成建, 曲建林, 杨志远, 汪广恒, 杨伏生, 周安宁.分散剂与神府煤成浆性的匹配规律[J].化工学报, 2016, 67(9):3965-3971. http://d.old.wanfangdata.com.cn/Periodical/hgxb201609055

    SONG Cheng-jian, QU Jian-lin, YANG Zhi-yuan, WANG Guang-heng, YANG Fu-sheng, ZHOU An-ning. Matching rules between dispersants and Shenfu coal slurryability[J]. J Chem Ind Eng, 2016, 67(9):3965-3971. http://d.old.wanfangdata.com.cn/Periodical/hgxb201609055
    [17] 尉迟唯, 李保庆, 李文, 陈皓侃.中国不同变质程度煤制备水煤浆性质研究[J].燃料化学学报, 2005, 33(2):155-160. doi: 10.3969/j.issn.0253-2409.2005.02.006

    YU Chi-wei, LI Bao-qing, LI Wen, CHEN Hao-kan. Study on the properties of coal water slurry prepared with different coal ranks[J]. J Fuel Chem Technol, 2005, 33(2):155-160. doi: 10.3969/j.issn.0253-2409.2005.02.006
    [18] GENG W, KUMABE Y, NAKAJIMA T, TAKANASHI H, OHKI A. Analysis of hydrothermally-treated and weathered coals by X-ray photoelectron spectroscopy (XPS)[J]. Fuel, 2009, 88(4):644-649. doi: 10.1016/j.fuel.2008.09.025
    [19] KADIOGLU Y, VARAMAZ M. The effect of moisture content and air-drying on spontaneous combustion characteristics of two Turkish lignites[J]. Fuel, 2003, 82(13):1685-1693. doi: 10.1016/S0016-2361(02)00402-7
    [20] 刘猛, 陈良勇, 段钰锋.煤浆浓度和颗粒分布对煤浆黏度预测的影响[J].燃料化学学报, 2009, 37(3):266-270. doi: 10.3969/j.issn.0253-2409.2009.03.003

    LIU Meng, CHEN Liang-yong, DUAN Yu-feng. Influence of concentration and particle size distribution on viscosity prediction of coal slurry[J]. J Fuel Chem Technol, 2009, 37(3):266-270. doi: 10.3969/j.issn.0253-2409.2009.03.003
    [21] 高志芳, 朱书全, 吴晓华.褐煤提质改性对水煤浆特性的影响[J].煤炭科学技术, 2010, 38(9):112-116. http://d.old.wanfangdata.com.cn/Periodical/mtkxjs201009030

    GAO Zhi-fang, ZHU Shu-quan, WU Xiao-hua. Lignite upgrading modification affected to features of coal water mixture[J]. Coal Sci Technol, 2010, 38(9):112-116. http://d.old.wanfangdata.com.cn/Periodical/mtkxjs201009030
    [22] 刘煜, 李伟东, 刘海峰.污泥干燥预处理后与神府煤共成浆性的研究[J].燃料化学学报, 2010, 38(6):656-659. doi: 10.3969/j.issn.0253-2409.2010.06.004

    LIU Yu, LI Wei-dong, LIU Hai-feng. Co-slurry ability of dried sewage sludge and Shenfu coal[J]. J Fuel Chem Technol, 2010, 38(6):656-659. doi: 10.3969/j.issn.0253-2409.2010.06.004
    [23] 刘明强, 刘建忠, 王睿坤, 周俊虎, 岑可法.热解温度对褐煤半焦成浆特性影响的实验研究[J].中国电机工程学报, 2013, 33(8):36-43. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201308006

    LIU Ming-qiang, LIU Jian-zhong, WANG Rui-kun, ZHOU Jun-hu, CEN Ke-fa. Effects of pyrolysis temperature on slurry ability of lignite semi-coke[J]. Proc CSEE, 2013, 33(8):36-43. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201308006
    [24] ROH N S, SHIN D H, KIM D C, KIM J D. Rheological behavior of coal-water mixtures.1. Effects of coal type, loading and particle-size[J]. Fuel, 1995, 74(8):1220-1225. doi: 10.1016/0016-2361(95)00041-3
    [25] WU J H, LIU J Z, YU Y J, WANG R K, ZHOU J H, CEN K F. Improving slurryability, rheology, and stability of slurry fuel from blending petroleum coke with lignite[J]. Pet Sci, 2015, 12(1):157-169. doi: 10.1007/s12182-014-0008-3
    [26] 刘猛, 段钰锋, 李华锋, 马修元.改性污泥与石油焦的共成浆性及流变性分析[J].中国电机工程学报, 2012, 32(35):59-65. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201235009

    LIU Meng, DUAN Yu-feng, LI Hua-feng, MA Xiu-yuan. Analysis on co-slurryability and rheology of modified sludge and petroleum coke[J]. Proc CSEE, 2012, 32(35):59-65. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201235009
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  36
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-15
  • 修回日期:  2019-01-13
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-03-10

目录

    /

    返回文章
    返回