留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of Cu and Mo components of γ-Al2O3 supported nickel catalysts on hydrodeoxygenation of fatty acid methyl esters to fuel-like hydrocarbons

JING Zhong-yu ZHANG Tao-qi SHANG Jiang-wei ZHAI Ming-lu YANG Hao QIAO Cong-zhen MA Xin-qi

景仲雨, 张韬奇, 商江伟, 翟明路, 杨浩, 乔聪震, 马新起. 铜钼组分对γ-Al2O3负载镍催化剂脂肪酸甲酯加氢脱氧性能的影响[J]. 燃料化学学报(中英文), 2018, 46(4): 427-440.
引用本文: 景仲雨, 张韬奇, 商江伟, 翟明路, 杨浩, 乔聪震, 马新起. 铜钼组分对γ-Al2O3负载镍催化剂脂肪酸甲酯加氢脱氧性能的影响[J]. 燃料化学学报(中英文), 2018, 46(4): 427-440.
JING Zhong-yu, ZHANG Tao-qi, SHANG Jiang-wei, ZHAI Ming-lu, YANG Hao, QIAO Cong-zhen, MA Xin-qi. Influence of Cu and Mo components of γ-Al2O3 supported nickel catalysts on hydrodeoxygenation of fatty acid methyl esters to fuel-like hydrocarbons[J]. Journal of Fuel Chemistry and Technology, 2018, 46(4): 427-440.
Citation: JING Zhong-yu, ZHANG Tao-qi, SHANG Jiang-wei, ZHAI Ming-lu, YANG Hao, QIAO Cong-zhen, MA Xin-qi. Influence of Cu and Mo components of γ-Al2O3 supported nickel catalysts on hydrodeoxygenation of fatty acid methyl esters to fuel-like hydrocarbons[J]. Journal of Fuel Chemistry and Technology, 2018, 46(4): 427-440.

铜钼组分对γ-Al2O3负载镍催化剂脂肪酸甲酯加氢脱氧性能的影响

基金项目: 

National Science and Technology Supporting Program 2013BAB11B02

Science and Technology Development Project of Henan Province 152102210258

详细信息
  • 中图分类号: TQ517.2

Influence of Cu and Mo components of γ-Al2O3 supported nickel catalysts on hydrodeoxygenation of fatty acid methyl esters to fuel-like hydrocarbons

Funds: 

National Science and Technology Supporting Program 2013BAB11B02

Science and Technology Development Project of Henan Province 152102210258

More Information
  • 摘要: 制备一系列包含或不包含铜、钼组分的Ni/γ-Al2O3催化剂,并对其进行表征和性能测试。考察了铜、钼负载量,浸渍顺序(包括连续浸渍和共浸渍),反应条件对脂肪酸甲酯加氢脱氧反应性能的影响。根据TG数据,使用过的20Ni-6Cu/γ-Al2O3催化剂其热失重小于20Ni/γ-Al2O3催化剂,这表明,铜的引入能够有效抑制反应过程中催化剂表面的积炭行为。对于20Ni-6Cu/γ-Al2O3和20Ni-6Cu-nMo/γ-Al2O3n=2、5、8和12)催化剂,NH3-TPD分析结果显示,钼物相的引入对载体γ-Al2O3的酸性位有着显著影响,当钼负载量达到5%时,可以观察到一个新的酸位对应于中强酸位。铜和钼修饰过的催化剂其催化性能要高于Ni/γ-Al2O3催化剂。从XPS的分析可以看出,催化剂中的铜主要以正二价形式存在,钼主要以正四价和正六价形式存在,而且不同的浸渍顺序会影响催化剂表面活性组分的实际含量。此外,脂肪酸甲酯的转化率和烷烃产品的收率也和所制备出来的催化剂的浸渍顺序有关。在所有的催化剂中,使用连续浸渍(先浸渍镍铜组分、浸渍钼组分)所制备的三金属20Ni-6Cu-5Mo/γ-Al2O3催化剂展现了优异的催化性能。在适宜的反应条件下(350 ℃,2.5 MPa,WSHV=2.0 h-1,H2/oil ratio=1250 mL/mL),脂肪酸甲酯的转化率和烷烃产品的收率分别达到98.4%和94.2%。
  • Figure  1  XRD patterns of γ-Al2O3 and catalysts

    (a): a: γ-Al2O3; b: 20Ni/γ-Al2O3; c: 20Ni-1Cu/γ-Al2O3; d: 20Ni-3Cu/γ-Al2O3; e: 20Ni-6Cu/γ-Al2O3; f: 20Ni-10Cu/γ-Al2O3
    (b): a: 20Ni-6Cu/γ-Al2O3; b: 20Ni-6Cu-2Mo/γ-Al2O3; c: 20Ni-6Cu-5Mo/γ-Al2O3; d: 20Ni-6Cu-8Mo/γ-Al2O3; e: 20Ni-6Cu-12Mo/γ-Al2O3
    (c): a: 20Ni-6Cu/γ-Al2O3; b: Ni-Cu-Mo(s)/γ-Al2O3; c: Ni-Cu-Mo/γ-Al2O3; d: Mo-Ni-Cu/γ-Al2O3
    (a): ◆: NiO; ●: Al2O3; (b): ▲: MoO3

    Figure  2  adsorption-desorption isotherm of catalysts

    (a): 20Ni-mCu/γ-Al2O3; (b): 20Ni-6Cu-nMo/γ-Al2O3; (c): catalysts from different impregnation sequence

    Figure  3  Pore diameter distributions of catalysts

    (a): 20Ni-mCu/γ-Al2O3; (b): 20Ni-6Cu-nMo/γ-Al2O3; (c): catalysts from different impregnation sequence

    Figure  4  H2-TPR profiles of catalysts

    (a): a: 20Ni/γ-Al2O3; b: 20Ni-1Cu/γ-Al2O3; c: 20Ni-3Cu/γ-Al2O3; d: 20Ni-6Cu/γ-Al2O3; e: 20Ni-10Cu/γ-Al2O3; f: 6Ni-20Cu/γ-Al2O3
    (b): a: 20Ni-6Cu/γ-Al2O3; b: 20Ni-6Cu-2Mo/γ-Al2O3; c: 20Ni-6Cu-5Mo/γ-Al2O3; d: 20Ni-6Cu-8Mo/γ-Al2O3; e: 20Ni-6Cu-12Mo/γ-Al2O3
    (c): a: 20Ni-6Cu/γ-Al2O3; b: Ni-Cu-Mo(s)/γ-Al2O3; c: Mo-Ni-Cu/γ-Al2O3; d: Ni-Cu-Mo/γ-Al2O3

    Figure  5  NH3-TPD profiles of γ-Al2O3 and catalysts

    (a): a: γ-Al2O3; b: 20Ni/γ-Al2O3; c: 20Ni-1Cu/γ-Al2O3; d: 20Ni-3Cu/γ-Al2O3; e: 20Ni-6Cu/γ-Al2O3; f: 20Ni-10Cu/γ-Al2O3
    (b): a: 20Ni-6Cu/γ-Al2O3; b: 20Ni-6Cu-2Mo/γ-Al2O3; c: 20Ni-6Cu-5Mo/γ-Al2O3; d: 20Ni-6Cu-8Mo/γ-Al2O3; e: 20Ni-6Cu-12Mo/γ-Al2O3
    (c): a: 20Ni-6Cu/γ-Al2O3; b: Ni-Cu-Mo(s)/γ-Al2O3; c: Mo-Ni-Cu/γ-Al2O3; d: Ni-Cu-Mo/γ-Al2O3

    Figure  6  TG curves of the fresh and spent 20Ni/γ-Al2O3 and 20Ni-6Cu/γ-Al2O3 catalysts

    Figure  7  Ni 2p, Cu 2p and Mo 3d core-level spectra of catalysts

    Figure  8  SEM and EDS spectra of γ-Al2O3 and catalyst

    (a): γ-Al2O3; (b): 20Ni-6Cu/γ-Al2O3; (c): 20Ni-6Cu-5Mo/γ-Al2O3

    Figure  9  Catalytic performance and products distributions over the catalysts with different Cu loadings

    Figure  10  Catalytic performance and products distributions over the catalysts with different Mo loading

    Figure  11  Catalytic performance and products distributions over the catalysts from different impregnation sequences

    Figure  12  Catalytic performance of 20Ni-6Cu-5Mo/γ-Al2O3 catalyst with different temperature

    Figure  13  Catalytic performance of 20Ni-6Cu-5Mo/γ-Al2O3 catalyst with different pressure

    Figure  14  Catalytic performance of 20Ni-6Cu-5Mo/γ-Al2O3 catalyst with different WHSV

    Figure  15  Catalytic performance of 20Ni-6Cu-5Mo/γ-Al2O3 catalyst with different H2/oil ratio

    Table  1  Textural properties of the catalysts

    Catalyst BET surface area A/(m2·g-1) Pore volume v/(cm3·g-1) Avg. pore diameter d/nm
    20Ni/γ-Al2O3 278 0.68 4.88
    20Ni-1Cu/γ-Al2O3 271 0.64 4.89
    20Ni-3Cu/γ-Al2O3 242 0.62 4.88
    20Ni-6Cu/γ-Al2O3 222 0.47 4.90
    20Ni-10Cu/γ-Al2O3 203 0.44 4.90
    20Ni-6Cu-2Mo/γ-Al2O3 212 0.45 4.89
    20Ni-6Cu-5Mo/γ-Al2O3 207 0.43 4.89
    20Ni-6Cu-8Mo/γ-Al2O3 204 0.41 4.31
    20Ni-6Cu-12Mo/γ-Al2O3 188 0.31 3.82
    Ni-Cu-Mo(s)/γ-Al2O3 214 0.45 4.89
    Mo-Ni-Cu/γ-Al2O3 213 0.43 4.31
    下载: 导出CSV

    Table  2  Relative atomic ratios of elements in the near-surface layer of catalysts with different Mo contents

    Catalyst [Ni]/[Al] [Cu]/[Al] [Mo]/[Al] [O]/[Al]
    20Ni-6Cu/γ-Al2O3 0.05 0.006 1.04
    20Ni-6Cu-2Mo/γ-Al2O3 0.05 0.006 0.01 1.17
    20Ni-6Cu-5Mo/γ-Al2O3 0.05 0.006 0.03 1.14
    20Ni-6Cu-8Mo/γ-Al2O3 0.04 0.007 0.04 1.20
    20Ni-6Cu-12Mo/γ-Al2O3 0.06 0.008 0.07 1.47
    下载: 导出CSV

    Table  3  Relative atomic ratios of elements in the near-surface layer of catalysts from different impregnation sequence

    Catalyst [Ni]/[Al] [Cu]/[Al] [Mo]/[Al] [O]/[Al]
    Ni-Cu-Mo/γ-Al2O3 0.05 0.006 0.03 1.14
    Mo-Ni-Cu/γ-Al2O3 0.04 0.006 0.02 1.16
    Ni-Cu-Mo(s)/γ-Al2O3 0.04 0.005 0.02 1.12
    下载: 导出CSV

    Table  4  Contents of various elements of γ-Al2O3, 20Ni-6Cu/γ-Al2O3 and 20Ni-6Cu-5Mo/γ-Al2O3catalysts

    Sample Elemental composition w/%
    O Al Ni Cu Mo
    γ-Al2O3 56.17 43.83
    20Ni-6Cu/γ-Al2O3 48.89 27.53 17.99 5.59
    20Ni-6Cu-5Mo/γ-Al2O3 46.30 26.72 17.44 4.67 4.87
    下载: 导出CSV
  • [1] KUMAR R, FAROOQUI S A, ANAND M, KUMAR R, JOSHI R, KHAN A, SINHA A K. Hydrotreatment of jatropha oil over NiMoS catalyst supported on thermostable mesoporous silica doped titania for the production of renewable drop-in diesel[J]. Catal Commun, 2017, 98:102-106. doi: 10.1016/j.catcom.2017.04.047
    [2] ZHANG Z N, TANG M X, CHEN J X. Effects of P/Ni ratio and Ni content on performance of γ-Al2O3-supported nickel phosphides for deoxygenation of methyl laurate to hydrocarbons[J]. Appl Surf Sci, 2016, 360(4):353-364. doi: 10.1016/j.apsusc.2015.10.182
    [3] LOE R, SANTILLAN-JIMENEZ E, MORGAN T, SEWELL L, JI Y, JONES S, ISAACS M A, LEE A F, CROCKER M. Effect of Cu and Sn promotion on the catalytic deoxygenation of model and algal lipids to fuel-like hydrocarbons over supported Ni catalysts[J]. Appl Catal B:Environ, 2016, 191:147-156. doi: 10.1016/j.apcatb.2016.03.025
    [4] ROH H S, EUM I H, JEONG D W, YI B E, NA J G, KO C H. The effect of calcination temperature on the performance of Ni/MgO-Al2O3 catalysts for decarboxylation of oleic acid[J]. Catal Today, 2011, 164(1):457-460. doi: 10.1016/j.cattod.2010.10.048
    [5] LIU Q Y, ZUO H L, WANG T J, MA L L, ZHANG Q. One-step hydrodeoxygenation of palm oil to isomerized hydrocarbon fuels over Ni supported on nano-sized SAPO-11 catalysts[J]. Appl Catal A:Gen, 2013, 468(12):68-74. https://www.researchgate.net/publication/269924108_One-step_hydrodeoxygenation_of_palm_oil_to_isomerized_hydrocarbon_fuels_over_Ni_supported_on_nano-sized_SAPO-11_catalysts
    [6] XIN H, GUO K, LI D, YANG H Q, HU C W. Production of high-grade diesel from palmitic acid over activated carbon-supported nickel phosphide catalysts[J]. Appl Catal B:Environ, 2016, 187:375-385. doi: 10.1016/j.apcatb.2016.01.051
    [7] KUKUSHKIN R G, BULAVCHENKO O A, KAICHEV V V, YAKOVLEV V A. Influence of Mo on catalytic activity of Ni-based catalysts in hydrodeoxygenation of esters[J]. Appl Catal B:Environ, 2015, 163:531-538. doi: 10.1016/j.apcatb.2014.08.001
    [8] ZHAO S, ZHANG Z N, ZHU K Y, CHEN J X. Hydroconversion of methyl laurate on bifunctional Ni2P/AlMCM-41 catalyst prepared via in situ phosphorization using triphenylphosphine[J]. Appl Surf Sci, 2017, 404:388-397. doi: 10.1016/j.apsusc.2017.02.016
    [9] CHEN N, GONG S F, QIAN E W. Effect of reduction temperature of NiMoO3-x/SAPO-11 on its catalytic activity in hydrodeoxygenation of methyl laurate[J]. Appl Catal B:Environ, 2015, 174/175:253-263. doi: 10.1016/j.apcatb.2015.03.011
    [10] SHI H, CHEN J X, YANG Y, TIAN S S. Catalytic deoxygenation of methyl laurate as a model compound to hydrocarbons on nickel phosphide catalysts:Remarkable support effect[J]. Fuel Process Technol, 2014, 118(1):161-170. https://www.sciencedirect.com/science/article/pii/S0378382013002713
    [11] CHEN J X, YANG Y, SHI H, LI M F, CHU Y, PAN Z Y, YU X B. Regulating product distribution in deoxygenation of methyl laurate on silica-supported Ni-Mo phosphides:Effect of Ni/Mo ratio[J]. Fuel, 2014, 129(7):1-10. https://www.researchgate.net/publication/272027839_Deoxygenation_of_methyl_laurate_to_hydrocarbons_on_silica-supported_Ni-Mo_phosphides_Effect_of_calcination_temperatures_of_precursor
    [12] JENIŠTOVÁ K, HACHEMI I, MÄKI-ARVELA P, KUMAR N, PEURLA M, ČAPEK L, WÄRNÅ J, MURZIN D Y. Hydrodeoxygenation of stearic acid and tall oil fatty acids over Ni-alumina catalysts:Influence of reaction parameters and kinetic modelling[J]. Chem Eng J, 2017, 316:401-409. doi: 10.1016/j.cej.2017.01.117
    [13] ZUO H L, LIU Q Y, WANG T J, MA L L, ZHANG Q, ZHANG Q. Hydrodeoxygenation of methyl palmitate over supported Ni catalysts for diesel-like fuel production[J]. Energy Fuels, 2012, 26(6):3747-3755. doi: 10.1021/ef300063b
    [14] KORDULIS C, BOURIKAS K, GOUSI M, KORDOULI E, LYCOURGHIOTIS A. Development of nickel based catalysts for the transformation of natural triglycerides and related compounds into green diesel:A critical review[J]. Appl Catal B:Environ, 2016, 181:156-196. doi: 10.1016/j.apcatb.2015.07.042
    [15] GALEA N M, KNAPP D, ZIEGLER T. Density functional theory studies of methane dissociation on anode catalysts in solid-oxide fuel cells:Suggestions for coke reduction[J]. J Catal, 2007, 247(1):20-33. doi: 10.1016/j.jcat.2006.12.021
    [16] FIERRO V, AKDIM O, MIRODATOS C. On-board hydrogen production in a hybrid electric vehicle by bio-ethanol oxidative steam reforming over Ni and noble metal based catalysts[J]. Green Chem, 2003, 5(1):20-24. doi: 10.1039/b208201m
    [17] BOUDJAHEM A G, CHETTIBI M, MONTEVERDI S, BETTAHAR M M. Acetylene hydrogenation over Ni-Cu nanoparticles supported on silica prepared by aqueous hydrazine reduction[J]. J Nanosci Nanotechnol, 2009, 9(6):3546-3554. doi: 10.1166/jnn.2009.NS28
    [18] GUO Q, WU M, WANG K, ZHANG L, XU X. Catalytic hydrodeoxygenation of algae bio-oil over bimetallic Ni-Cu/ZrO2, catalysts[J]. Ind Eng Chem Res, 2015, 54(3):890-899. doi: 10.1021/ie5042935
    [19] ARDIYANTI A R, KHROMOVA S A, VENDERBOSCH R H, YAKOVLEV V A, MELIÁN-CABRERA I V, HEERES H J. Catalytic hydrotreatment of fast pyrolysis oil using bimetallic Ni-Cu catalysts on various supports[J]. Appl Catal A:Gen, 2012, 449:121-130. doi: 10.1016/j.apcata.2012.09.016
    [20] MICHIO A, HARUO T, KIYOSHI O, KUNIO S, TADASUKE H, NAOYUKI T. Thermally stable nickel-molybdenum alloy catalysts supported on magnesium aluminate for high temperature methanation[J]. Sekiyu Gakkaishi, 2008, 24(6):363-370. https://www.researchgate.net/publication/271874895_Methanation_Activity_of_Tungsten_Catalysts_in_the_Presence_of_Hydrogen_Sulfide_at_an_Elevated_Temperature
    [21] KADINOV G, PRALIAUD H, PRIMET M, MARTIN G A. Morphological, electronic and catalytic properties of silica-supported nickel and nickel-molybdenum catalysts[J]. Appl Catal, 1984, 10(1):63-76. doi: 10.1016/0166-9834(84)85006-X
    [22] AGUADO J, ESCOLA J M, CASTRO M C. Influence of the thermal treatment upon the textural properties of sol-gel mesoporousγ-alumina synthesized with cationic surfactants[J]. Microporous Mesoporous Mater, 2010, 128(1/3):48-55. doi: 10.1007/s40097-016-0192-3
    [23] LIU J, LIU C, ZHOU G, SHEN S T, RONG L. Hydrotreatment of Jatropha oil over NiMoLa/Al2O3 catalyst[J]. Green Chem, 2012, 14(9):2499-2505. doi: 10.1039/c2gc35450k
    [24] THOMMES M, KANEKO K, NEIMARK A V, OLIVIER J P, RODRIGUEZ-REINOSO F, ROUQUEROL J, SING K S W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure Appl Chem, 2011, 38(1):25-25. http://sol.rutgers.edu/~aneimark/PDFs/IUPAC_Report_PAC_2015.pdf
    [25] LIU C Y, YANG H, JING Z Y, XI K Z, QIAO C Z. Hydrodeoxygenation of fatty acid methyl esters and isomerization of products over NiP/SAPO-11 catalysts[J]. Fuel Chem Technol, 2016, 44(10):1211-1216. doi: 10.1016/S1872-5813(16)30052-4
    [26] LIU Q Y, ZUO H L, ZHANG Q, WANG T J, MA L L. Hydrodeoxygenation of palm oil to hydrocarbon fuels over Ni/SAPO-11 catalysts[J]. Chin J Catal, 2014, 35(5):748-756. doi: 10.1016/S1872-2067(12)60710-4
    [27] TIAN S S, CHEN J X, . Hydroisomerization of n-dodecane on a new kind of bifunctional catalyst:Nickel phosphide supported on SAPO-11 molecular sieve[J]. Fuel Process Technol, 2014, 122(122):120-128. https://www.researchgate.net/publication/260212317_Hydroisomerization_of_n-dodecane_on_a_new_kind_of_bifunctional_catalyst_Nickel_phosphide_supported_on_SAPO-11_molecular_sieve
    [28] ASSAF P G M, NOGUEIRA F G E, ASSAF E M. Ni and Co catalysts supported on alumina applied to steam reforming of acetic acid:Representative compound for the aqueous phase of bio-oil derived from biomass[J]. Catal Today, 2013, 213(37):2-8. https://www.researchgate.net/publication/257325303_Ni_and_Co_catalysts_supported_on_alumina_applied_to_steam_reforming_of_acetic_acid_Representative_compound_for_the_aqueous_phase_of_bio-oil_derived_from_biomass
    [29] BERTEAU P, DELMON B. Modified aluminas:Relationship between activity in 1-butanol dehydration and acidity measured by NH3-TPD[J]. Catal Today, 1989, 5(2):121-137. doi: 10.1016/0920-5861(89)80020-3
    [30] ZHAO S, LI M F, CHU Y, CHEN J X. Hydroconversion of methyl laurate as a model compound to hydrocarbons on bifunctional Ni2P/SAPO-11:Simultaneous comparison with the performance of Ni/SAPO-11[J]. Energy Fuels, 2014, 28(11):7122-7132. doi: 10.1021/ef501723p
    [31] XIA Z J, LIU H Y, LU H F, ZHANG Z K, CHEN Y F. Study on catalytic properties and carbon deposition of Ni-Cu/SBA-15 for cyclohexane dehydrogenation[J]. Appl Surf Sci, 2017, 422:905-912. doi: 10.1016/j.apsusc.2017.04.245
    [32] KHROMOVA S A, SMIRNOV A A, BULAVCHENKO O A, SARAEV A A, KAICHEV V V, Reshetnikov S I, YAKOVLEV V A. Anisole hydrodeoxygenation over Ni-Cu bimetallic catalysts:The effect of Ni/Cu ratio on selectivity[J]. Appl Catal A:Gen, 2014, 470(2):261-270. https://www.sciencedirect.com/science/article/pii/S0926860X13006637
    [33] KOCHETKOVA D, BLAŽEK J, ŠIMÁČEK P, STAŠ M, BEŇO Z. Influence of rapeseed oil hydrotreating on hydrogenation activity of CoMo catalyst[J]. Fuel Process Technol, 2016, 142:319-325. doi: 10.1016/j.fuproc.2015.10.034
    [34] BOTAS J A, SERRANO D P, GARCÍA A, VICENTE J D, RAMOSA R. Catalytic conversion of rapeseed oil into raw chemicals and fuels over Ni-and Mo-modified nanocrystalline ZSM-5 zeolite[J]. Catal Today, 2012, 195(1):59-70. doi: 10.1016/j.cattod.2012.04.061
    [35] TOBAA M, ABEA Y, KURAMOCHI H, OSAKO M, MOCHIZUKI T, YOSHIMURAA Y J. Hydrodeoxygenation of waste vegetable oil over sulfide catalysts[J]. Catal Today, 2011, 164(1):533-537. doi: 10.1016/j.cattod.2010.11.049
    [36] VERMA D, RANA B S, KUMAR R, SIBI, M G, SINHA A K. Diesel and aviation kerosene with desired aromatics from hydroprocessing of jatropha oil over hydrogenation catalysts supported on hierarchical mesoporous SAPO-11[J]. Appl Catal A:Gen, 2015, 490:108-116. doi: 10.1016/j.apcata.2014.11.007
    [37] PERONI M, MANCINO G, BARÁTHA E, GUTIÉRREZ O Y, LERCHER J A. Bulk andγAl2O3-supported Ni2P and MoP for hydrodeoxygenation of palmitic acid[J]. Appl Catal B:Environ, 2016, 180:301-311. doi: 10.1016/j.apcatb.2015.06.042
    [38] WANG H Y, JIAO T T, LI Z X, LI C S, ZHANG S J, ZHANG J L. Study on palm oil hydrogenation for clean fuel over Ni-Mo-W/γ-Al2O3-ZSM-5 catalyst[J]. Fuel Process Technol, 2015, 139:91-99. doi: 10.1016/j.fuproc.2015.08.004
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  30
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-18
  • 修回日期:  2018-02-28
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-04-10

目录

    /

    返回文章
    返回