留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ce-Co/KIT-6介孔材料的制备及其脱汞性能的研究

高兰君 王夫美 吴撼明 潘奕君 沈伯雄

高兰君, 王夫美, 吴撼明, 潘奕君, 沈伯雄. Ce-Co/KIT-6介孔材料的制备及其脱汞性能的研究[J]. 燃料化学学报(中英文), 2017, 45(8): 1017-1024.
引用本文: 高兰君, 王夫美, 吴撼明, 潘奕君, 沈伯雄. Ce-Co/KIT-6介孔材料的制备及其脱汞性能的研究[J]. 燃料化学学报(中英文), 2017, 45(8): 1017-1024.
GAO Lan-jun, WANG Fu-mei, WU Han-ming, PAN Yi-jun, SHEN Bo-xiong. Synthesis of mesoprous materials with Ce-Co/KIT-6 and its mercury removal performance[J]. Journal of Fuel Chemistry and Technology, 2017, 45(8): 1017-1024.
Citation: GAO Lan-jun, WANG Fu-mei, WU Han-ming, PAN Yi-jun, SHEN Bo-xiong. Synthesis of mesoprous materials with Ce-Co/KIT-6 and its mercury removal performance[J]. Journal of Fuel Chemistry and Technology, 2017, 45(8): 1017-1024.

Ce-Co/KIT-6介孔材料的制备及其脱汞性能的研究

详细信息
    通讯作者:

    沈伯雄, E-mail:shenboxiong0722@sina.com

  • 中图分类号: X511;O647.2

Synthesis of mesoprous materials with Ce-Co/KIT-6 and its mercury removal performance

  • 摘要: 以P123表面活性剂为模板,采用硬模板法制备了有序介孔材料KIT-6,以KIT-6为载体,Ce(NO32·6H2O和Co(NO32·6H2O为Ce和Co源,采用溶液浸渍法制备了负载型Ce-Co/KIT-6介孔材料。在模拟烟气条件下,利用固定床实验台架研究了Ce-Co/KIT-6材料对烟气中的单质汞(Hg0)的脱除性能。采用扫描电镜(SEM)、N2吸附-脱附(BET)、X射线衍射分析(XRD)、傅里叶红外光谱分析(FT-IR)、氢气程序升温还原(H2-TPR)以及热重分析(TGA)等方法对材料进行表征。结果表明,Ce和Co在KIT-6孔道内部高度分散,同时材料保持高度有序的孔道结构、比表面积高达495.2 m2/g,孔径4.6 nm。脱汞实验结果表明,Ce-Co/KIT-6对Hg0的氧化吸附去除效率很高,250 ℃下对Hg0的氧化吸附去除效率高达95%以上,在这个过程中,O2的存在明显促进了催化剂的脱汞能力。氧通过Ce-Co价态的变化进入金属结构中,再与汞发生反应是这个过程的主要机理。
  • 图  1  烟气脱汞装置示意图

    Figure  1  Device diagrammatic sketch of Hg0 removing in simulative flue gas

    图  2  KIT-6扫描电镜照片

    Figure  2  SEM images of KIT-6

    图  3  Ce-Co/KIT-6扫描电镜照片

    Figure  3  SEM images of Ce-Co/KIT-6

    图  4  催化剂的N2吸附-脱附曲线

    Figure  4  N2 adsorption-desorption curves of catalyst samples

    (a): N2 adsorption-desorption isotherms; (b): pore size distributions

    图  5  KIT-6和Ce-Co/KIT-6的小角XRD谱图

    Figure  5  Low-angle XRD patterns of KIT-6 and Ce-Co/KIT-6

    图  6  样品的傅里叶红外光谱谱图

    Figure  6  FT-IR analysis

    A: KIT-6; B: Ce-Co/KIT-6; C: Ce-Co/KIT-6(after Hg removal)

    图  7  催化剂的H2-TPR谱图

    Figure  7  H2-TPR of catalysts

    图  8  KIT-6的TG-DSC热解谱图

    Figure  8  TG-DSC profiles of KIT-6

    图  9  Ce-Co/KIT-6的TG-DSC热解谱图

    Figure  9  TG-DSC profiles of Ce-Co/KIT-6

    图  10  未添加SO2催化剂对Hg0脱除效率的影响

    Figure  10  Effect of temperature on Hg0 removal efficiency of catalysts without SO2

    a: Ce-Co/KIT-6(have oxygen aerobic); b: KIT-6(have oxygen aerobic); c: KIT-6(anaerobic); d: Ce-Co/KIT-6(anaerobic)

    图  11  添加SO2对催化剂Hg0脱除效率的影响

    Figure  11  Effect of temperature on Hg0 removal efficiency of catalysts with SO2

    a: Ce-Co/KIT-6(have oxygen aerobic); b: KIT-6(have oxygen aerobic); c: KIT-6(anaerobic); d: Ce-Co/KIT-6(anaerobic)

    表  1  催化剂的比表面积及孔容、孔径

    Table  1  The specific area pore volume and pore diameter of the SCR catalysts

  • [1] LI P, FENG X B, QIU G L, SHANG L H, LIZG. Mercury pollution in Asia: A review of the contaminated sites[J]. J Hazrad Mater, 2009, 168(2/3): 591-601. https://www.researchgate.net/profile/Zhonggen_Li/publication/24256386_Mercury_pollution_in_Asia_A_review_of_the_contaminated_sites/links/0a85e534161cb3cd12000000.pdf
    [2] PACYNA EG, PACYN JM, SUNDSETH K, MUNTHE J, KINDBOM K. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020[J]. Atmospheric Environment, 2010, 44(20): 2487-2499. doi: 10.1016/j.atmosenv.2009.06.009
    [3] ZHENG Liu-gen, LIU Gui-jian, Ql Cui-cui, CHEN Yi-wei, ZHANG Ying. Study on environment geochemistry of mercury in Chinese coals[J]. J Univer Sci Technol China, 2007, 37(8): 953-963. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZKJD200708021.htm
    [4] SLEMR F, SCHUSTER G, SEILER W. Distribution, speciation and budget of atmospheric mercury[J]. J Atmospheric Chem, 1985, 3(4): 407-434. doi: 10.1007/BF00053870
    [5] QU Z, YAN N, LIU P, JIA J, YANG S. The role of iodine monochlorid, for the oxidation of elemental mercury[J]. J Hazardous Materials, 2010, 183(1/3): 132-137. https://www.researchgate.net/publication/45439057_The_role_of_iodine_monochloride_for_the_oxidation_of_elemental_mercury
    [6] HE C, SHEN B, CHEN J, CAI J. Adsorption and oxidation of elemental mercury over Ce-Mnx/Ti-PILCs[J]. Environ Sci Technol, 2014, 48(14): 7891-7898. doi: 10.1021/es5007719
    [7] ZHANG H R, WU H, LIU H, WANG M, YANG H. Performance and kinetics of mercury adsorption over Taixi activated coke[J]. CIESC Journal, 2013, 64(3): 1076-1083. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HGSZ201303042.htm
    [8] LI G, SHEN B, LI Y, ZHAO B, WANG F, HE C. Removal of element mercury by medicine residue derived biocharsin presence of various gas compositions[J]. J Hazardous Material, 2015, 298(15): 162-169. http://www.sciencedirect.com/science/article/pii/S0304389415004276
    [9] SELVARAJ M, SINHAP K, LEE K, AHN I, PANDURANGAN A, LEE T G. Synthesis and characterization of Mn-MCM-41 and Zr-Mn-MCM-41[J]. Microporous Mesoporous Mater, 2005, 78, 139-149. doi: 10.1016/j.micromeso.2004.10.004
    [10] O'SHEA V, ALVAREZ-GALVAN M C, FIERRO J L G, ARIAS P L. Influence of feed composition on the activity of Mn and PdMn/Al2O3 catalysts for combustion of formaldehyde/methanol[J]. Appl Catal B 2005, 57(3): 191-199. doi: 10.1016/j.apcatb.2004.11.001
    [11] XIE Xiao-wei, LI Yong, LIU Zhi-quan, MASATAKE H, SHEN Wen-jie. Low-temperature oxidation of CO catalysed by Co3O4 nanorods[J]. Nature, 2009, 458(7239): 746-749. doi: 10.1038/nature07877
    [12] SCHUNK B S A, DEMUTH D G, SCHULZDOBRIK B, UNGER K K. Microporous Mesoporous Mater. 2005, 78, 139.
    [13] KLEITZ F, CHOI S, RYOO R. Cubic Ia 3d large mesoporous silica: Synthesis and replication to platinum nanowires, carbannanorods and carbon nanotubes[J]. Korean J Chem Eng, 2009, 26(5): 2136-2137. http://europepmc.org/abstract/med/13678168
    [14] JERMY B R, KIM S Y, BINEESH K V, SELVARAJ M, PARK D W. Direct incorporation of vanadium into three-dimensional KIT-6:1. Optimization of synthesis conditions[J]. Korean J Chem Eng, 2009, 90: 55-63. doi: 10.1007/s11814-009-0199-2
    [15] LAHA S C, RYOO R. Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates[J]. Chem Soc, 2007, 129(21): 6698-6699. doi: 10.1021/ja070908q
    [16] LEE D, IHM S, LEE K. Mesostructure control using a titania-coated silica nanosphere framwork with extremely high thermal stability[J]. Korea J Chem Eng, 2009, 26(5): 1235-1240. doi: 10.1007/s11814-009-0199-2
    [17] DING Z, LU G Q. Greenfeild. Role of the crystalltie phase of TiO2 in heterogeneous photocatalysis for phenol oxidation water[J]. Phys Chem B, 2000, 104: 4815-4821. doi: 10.1021/jp993819b
    [18] SONI K, RANA B S, SINHA A K, BHAUMIK A, NANDI M. 3-D ordered mesoporous KIT-6 support for effiective hydrodesulfurization catalysts[J]. Appl Catal B: Environ, 2009, 90: 55-63. doi: 10.1016/j.apcatb.2009.02.010
    [19] YEE K K, REIMER N, LIU J, CHENG S Y, YIU S M. Effective mercury sorption by thiol-laced metal-organic frameworks: in strong acid and the vapor phase[J]. J Am Chem Soc, 2013, 135(21): 7795-7798. doi: 10.1021/ja400212k
    [20] LEVI G, SENNECA O, CAUSÀ M, SALATINO P, LACOVIG P, LIZZIT S. Probing the chemical nature of surface oxides during coal char oxidation by high-resolution XPS[J]. Carbon, 2015, 90: 181-196. doi: 10.1016/j.carbon.2015.04.003
    [21] ETTIREDDY P R, ETTIREDDY N, MAMEDOV S, BOOLCHAND P, SMIRNIOTIS P G. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3[J]. Appl Catal B: Environmental, 2007, 76(1/2): 123-134. http://www.sciencedirect.com/science/article/pii/S092633730700152X
    [22] HAYKIRI-ACMA H, YAMAN S. Synergy in devolatilization characteristics of lignite and hazelnut shell during co-pyrolysis[J]. Fuel, 2007, 86(3): 373-380. doi: 10.1016/j.fuel.2006.07.005
    [23] KAMATA H, UENOSI, NAITOT, YUKIMURA A. Mercury oxidation over the V2O5(WO3)/TiO2 commercial SCR catalyst[J]. Ind Eng Chem Res, 2008, 47(21): 8136-8141. doi: 10.1021/ie800363g
    [24] YANG J, YANG Q, SUN J, LIU Q C, ZHAO D, GAO W, LIU L. Effects of mercury oxidation on V2O5-WO3/TiO2 catalyst properties in NH3-SCR process[J]. Catal Commun, 2015, 59: 78-82. doi: 10.1016/j.catcom.2014.09.049
    [25] HONG H J, HAM S W, KIM M H, LEE S M, LEE J B. Characteristics of commercial selective catalytic reduction catalyst for the oxidation of gaseous elemental mercury with respect to reaction conditions[J]. Korean J Chem Eng, 2010, 27(4): 1117-1122. doi: 10.1007/s11814-010-0175-x
    [26] KONG F, QIU J, HAO L, RAN Z, ZENG H. Effect of NO/SO2 on elemental mercury adsorption by nano-Fe2O3[J]. Proceedings of the CSEE, 2010, 30(35): 43-48. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGDC201035009.htm
    [27] LIU H, ZHANG H, YANG H. Photocatalytic removal of nitric oxide by multi-walled carbon nanotubes-supported TiO2[J]. Chin J Catal, 2014, 35(1): 66-77. doi: 10.1016/S1872-2067(12)60705-0
    [28] HRDLICKA J A, SEAMES W S, MANN M D, MUGGLI D S, HORABIK C A. Mercury oxidation in flue gas using gold and palladium catalysts on fabric filters[J]. Environ Sci Technol, 2008, 42(17): 6677-82. doi: 10.1021/es8001844
    [29] CAO Y, CHENG C M, CHEN C W, LIU M, WANG C, PAN W P. Abatement of mercury emissions in the coal combustion process equipped with a fabric filter baghouse[J]. Fuel, 2008, 87(15/16): 3322-3330. http://www.sciencedirect.com/science/article/pii/S0016236108002123
    [30] HENDERSON MICHAEL A. An HREELS and TPD study of water on TiO2[J]. Surface Science, 1996, 355(1): 151-166. http://www.sciencedirect.com/science/article/pii/0039602895013571
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  42
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-17
  • 修回日期:  2017-05-24
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-08-10

目录

    /

    返回文章
    返回