留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PdMoP/γ-Al2O3催化剂上大豆油甲酯加氢脱氧制备烷烃类生物柴油

姚敏 王燕娣 卢美贞 计建炳 刘学军

姚敏, 王燕娣, 卢美贞, 计建炳, 刘学军. PdMoP/γ-Al2O3催化剂上大豆油甲酯加氢脱氧制备烷烃类生物柴油[J]. 燃料化学学报(中英文), 2019, 47(12): 1450-1457.
引用本文: 姚敏, 王燕娣, 卢美贞, 计建炳, 刘学军. PdMoP/γ-Al2O3催化剂上大豆油甲酯加氢脱氧制备烷烃类生物柴油[J]. 燃料化学学报(中英文), 2019, 47(12): 1450-1457.
YAO Min, WANG Yan-di, LU Mei-zhen, JI Jian-bing, LIU Xue-jun. Hydrodeoxygenation of soybean oil methyl esters to alkane biodiesel over the PdMoP/γ-Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1450-1457.
Citation: YAO Min, WANG Yan-di, LU Mei-zhen, JI Jian-bing, LIU Xue-jun. Hydrodeoxygenation of soybean oil methyl esters to alkane biodiesel over the PdMoP/γ-Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1450-1457.

PdMoP/γ-Al2O3催化剂上大豆油甲酯加氢脱氧制备烷烃类生物柴油

详细信息
  • 中图分类号: TQ426.82

Hydrodeoxygenation of soybean oil methyl esters to alkane biodiesel over the PdMoP/γ-Al2O3 catalyst

More Information
  • 摘要: 采用等体积浸渍法将Pd、Mo和P元素负载在γ-Al2O3上制得PdMoP/γ-Al2O3催化剂,通过XRD、NH3-TPD、XPS、Py-FTIR、氮吸附和STEM-EDS等手段对催化剂进行了表征,以大豆油甲酯为原料考察了催化剂的催化加氢脱氧性能,并进行了加氢脱氧工艺条件的优化。结果表明,Pd、Mo、P三种元素相结合能够有效地调节催化剂的酸性;Mo元素可降低催化剂的强酸酸性;P元素可增强催化剂的弱酸酸性,使得催化剂弱酸的B/L值减小、强酸的B/L值略有增大。经优化后的加氢工艺条件为:315 ℃、1.5 MPa、WHSV为0.5 h-1、H2/esters体积比为1100,大豆油甲酯的转化率达到98.4%,C15-18烷烃收率达到91.5%。
  • 图  1  催化剂的N2吸附-脱附等温线和孔径分布

    Figure  1  N2 adsorption-desorption isotherms and pore size distribution of various catalysts

    图  2  催化剂的XRD谱图

    Figure  2  XRD patterns of various catalysts

    图  3  催化剂的NH3-TPD谱图

    Figure  3  NH3-TPD profiels of various catalysts

    图  4  催化剂P、P-M、P-M-P在200 ℃(实线)和350 ℃(虚线)的吡啶吸附红外光谱谱图

    Figure  4  Py-FTIR spectra of various catalysts (P, P-M and P-M-P) at 200 ℃ (solid line) and 350 ℃ (dashed line)

    图  5  催化剂P-M-P的XPS光谱谱图

    Figure  5  XPS spectra of the P-M-P catalyst

    (a): Pd 3d; (b): Mo 3d; (c): P 2p

    图  6  催化剂M-P的STEM-EDS照片和P-M-P的EDS谱图

    Figure  6  STEM-EDS map of M-P and EDS map of P-M-P

    图  7  催化剂的性能评价

    Figure  7  Performance of various catalysts in the hydrodeoxygenation of soybean oil methyl esters to alkane biodiesel

    图  8  PMP催化剂的性能评价

    Figure  8  Catalytic performance of PMP in the hydrodeoxygenation of soybean oil methyl esters to alkane biodiesel

    表  1  催化剂的性能

    Table  1  Textural properties of various catalysts

    Catalyst ABET/(m2·g-1) Aext/(m2·g-1) Amic/(m2·g-1) vmiso/(mL·g-1) vmeso/(mL·g-1)
    P 247.10 247.10 0.00 0.088 0.382
    M-P 211.33 211.33 0.00 0.074 0.353
    P-P 224.54 224.54 0.00 0.078 0.332
    P-M 197.86 197.86 0.00 0.085 0.263
    P-M-P 184.40 184.40 0.00 0.068 0.241
    下载: 导出CSV

    表  2  催化剂的NH3-TPD定量分析

    Table  2  Quantitative analysis results of NH3-TPD of various catalysts

    Catalyst P M-P P-P P-M-P
    Peak temperature t/℃ 165.2 294.6 628.3 167.5 644.0 165.9 618.3 164.5 633.3
    Quantity/(mmol·g-1) 0.2686 0.2489 0.0538 0.4577 0.0257 0.4775 0.0486 0.4130 0.0350
    下载: 导出CSV

    表  3  通过Py-FTIR测得催化剂P、P-M和P-M-P的酸度

    Table  3  Acidic properties of the P, P-M and P-M-P catalysts determined by Py-FTIR

    Sample Amounts of various acid sites /(μmol·g-1)
    total acid sites measured at 200 ℃ medium and strong acid sites measured at 350 ℃
    B L B+L B/L B L B+L B/L
    P 36.95 236.20 273.15 0.1564 35.80 98.60 134.40 0.3631
    P-M 23.96 193.45 217.41 0.1239 22.67 77.12 99.79 0.2940
    P-M-P 21.32 188.17 209.50 0.1133 18.47 61.88 80.36 0.2985
    下载: 导出CSV
  • [1] ZHAO X H, WEI L, CHENG S Y, JULSON J. Review of heterogeneous catalysts for catalytically upgrading vegetable oils into hydrocarbon biofuels[J]. Catalysts, 2017, 7(12):1-25 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=MDPI000000219930
    [2] KNOTHE G. Biodiesel and renewable diesel:A comparison[J]. Prog Energy Combust Sci, 2010, 36(3):364-373. doi: 10.1016/j.pecs.2009.11.004
    [3] ÁLVAREZ-GALVÁN M C, CAMPOS-MARTÍN J M, FIERRO J L. Transition metal phosphides for the catalytic hydrodeoxygenation of waste oils into green diesel[J]. Catalysts, 2019, 9, 293. doi: 10.3390/catal9030293
    [4] LI X, LUO X Y, JIN Y B, LI, JIN Y, ZHANG H D, ZHANG A P, XIE J. Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels[J]. Renewable Sustainable Energy Rev, 2018, 82:3762-3797. doi: 10.1016/j.rser.2017.10.091
    [5] KOUL R, KUMAR N, SINGH R C. A review on the production and physicochemical properties of renewable diesel and its comparison with biodiesel[J]. Energy Sources, Part A, 2019, doi:10.1080/15567036. 2019. 1646355.
    [6] WANG H, YAN S L, SALLEY S O, SIMON N K Y. Support effects on hydrotreating of soybean oil over NiMo carbide catalyst[J]. Fuel, 2013, 111:81-87. doi: 10.1016/j.fuel.2013.04.066
    [7] HONGMANOROM P, LUENGNARUEMITCHAI A, CHOLLACOOP N, YOSHIMURA Y. Effect of the Pd/MCM-41 pore size on the catalytic activity and cis-trans selectivity for partial hydrogenation of canola biodiesel[J]. Energy Fuels, 2017, 31(8):8202-8209. doi: 10.1021/acs.energyfuels.7b00832
    [8] 欧阳仟, 杨妮, 姚静雯, 黄进, 张怡, 刘学军.负载Pt催化生物柴油加氢脱氧性能研究[J].燃料化学学报, 2018, 46(10):61-68. http://www.ccspublishing.org.cn/article/id/1fbc0efb-ba2b-4b7c-afcf-0cf0d74612fa

    OU Yang-qian, YANG Ni, YAO Jing-wen, HUANG Jin, ZHANG Yi, LIU Xue-jun. Research on the catalytic performance of supported Pt catalyst for hydrodeoxygenation of biodiesel[J]. J Fuel Chem Technol, 2018, 46(10):61-68. http://www.ccspublishing.org.cn/article/id/1fbc0efb-ba2b-4b7c-afcf-0cf0d74612fa
    [9] DUAN H H, DONG J C, GU X R, PENG Y K, CHEN W X, ISSARIYAKUL T, MYERS W K, LI M J, YI N, KILPATRICK A F R, WANG Y, ZHENG X S, JI S F, WANG Q, FENG J T, CHEN D L, LI Y D, BUFFET J C, LIU H C, TSANG S C E, O'HARE D. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst[J]. Nat Commun, 2017, 8(1):591. http://cn.bing.com/academic/profile?id=51856041df29b360f9ab9adc813d15cb&encoded=0&v=paper_preview&mkt=zh-cn
    [10] 韩璐, 周亚松, 魏强, 罗怡, 王靖宇. NiW/Al2O3催化剂酸性与加氢活性的调变及对重油加氢脱氮性能的影响[J].燃料化学学报, 2014, 42(10):1233-1239. doi: 10.3969/j.issn.0253-2409.2014.10.012

    HAN Lu, ZHOU Ya-song, WEI Qiang, LUO Yi, WANG Jing-yu. Effect of acidity and hydrogenation ability on the hydrodenitrogenation performance of NiW/Al2O3 catalyst[J]. J Fuel Chem Technol, 2014, 42(10):1233-1239. doi: 10.3969/j.issn.0253-2409.2014.10.012
    [11] SCALDAFERRI C A, PASA V M D. Production of jet fuel and green diesel range biohydrocarbons by hydroprocessing of soybean oil over niobium phosphate catalyst[J]. Fuel, 2019, 245:458-466. doi: 10.1016/j.fuel.2019.01.179
    [12] OUYANG Q, YAO J W, YANG N, WANG Y W, YAO M, LIU X J. 0.7% Pt/beta-Al2O3 as a highly efficient catalyst for the hydrodeoxygenation of FAMEs to diesel-range alkanes[J]. Catal Commun, 2019, 120:46-50. doi: 10.1016/j.catcom.2018.11.013
    [13] SERRANO D P, ESCOLA J M, BRIONES L, ARROYO, M. Selective hydrodecarboxylation of fatty acids into long-chain hydrocarbons catalyzed by Pd/Al-SBA-15[J]. Microporous Mesoporous Mater, 2019, 280:88-96. doi: 10.1016/j.micromeso.2019.01.045
    [14] CHEN S, ZHOU G L, MIAO C X. Green and renewable bio-diesel produce from oil hydrodeoxygenation:Strategies for catalyst development and mechanism[J]. Renewable Sustainable Energy Rev, 2019, 101:568-589. doi: 10.1016/j.rser.2018.11.027
    [15] ETIENNE L, BERNARD D. Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalysts. Ⅰ. Catalytic reaction schemes[J]. Appl Catal A:Gen, 1994, 109(1):77-96. doi: 10.1016/0926-860X(94)85004-6
    [16] COAN P D, GRIFFIN M B, CIESIELSKI P N, MEDLIN J W. Phosphonic acid modifiers for enhancing selective hydrodeoxygenation over Pt catalysts:The role of the catalyst support[J]. J Catal, 2019, 372:311-320. doi: 10.1016/j.jcat.2019.03.011
    [17] FANG Q Y, JIANG Z C, GUO K, LIU X D, LI Z, LI G Y, HU G W. Low temperature catalytic conversion of oligomers derived from lignin in pubescens on Pd/NbOPO4[J]. Appl Catal B:Environ, 2019, doi:https://doi.org/ 10.1016/j.apcatb.2019.118325.
    [18] MONDAL J, SHIT S C, SINGURU R, POLLASTRI S, JOSEPH B, RAO B S, LINGAIAH N. Cu-Pd bimetallic nanoalloy anchored on N-rich porous organic polymer for high-performance hydrodeoxygenation of biomass-derived vanillin[J]. Catal Sci Technol, 2018, 8(8):2195-2210. doi: 10.1039/C8CY00325D
    [19] ADAMSKA K, OKAL J, TYLUS W. Stable bimetallic Ru-Mo/Al2O3 catalysts for the light alkane combustion:Effect of the Mo addition[J]. Appl Catal B:Environ, 2019, 246:180-194. doi: 10.1016/j.apcatb.2019.01.059
    [20] AMEEN M, Azizan M T, RAMLI A, YUSUP S, ALNARABIJI M S. Catalytic hydrodeoxygenation of rubber seed oil over sonochemically synthesized Ni-Mo/γ-Al2O3 catalyst for green diesel Production[J]. Ultrason Sonochem, 2018, 51:90-102.
    [21] YUAN G, BAI J, GAO B, REN L, MEI J, ZHANG L. The effect of crystal facet (312) exposure intensity of Ni12P5 nanoparticle on its hydrodechlorination catalytic activity[J]. Inorg Chem Commun, 2019, doi:https://doi.org/ 10.1016/j.inoche.2019.107595.
    [22] ZHANG Z, BI G, ZHANG H D, ZHANG A P, LI X, XIE J. Highly active and selective hydrodeoxygenation of oleic acid to second generation bio-diesel over SiO2-supported CoxNi1-xP catalysts[J]. Fuel, 2019, 247:26-35. doi: 10.1016/j.fuel.2019.03.021
    [23] XIN H, ZHOU W, ZHOU K, DU X, LI D, HU C. Controlling the growth of activated carbon supported nickel phosphide catalysts via adjustment of surface group distribution for hydrodeoxygenation of palmitic acid[J]. Catal Today, 2019, 319:182-190. doi: 10.1016/j.cattod.2018.03.051
    [24] MIJAN N A, LEE H V, ALSULTAN G A. Production of green diesel via cleaner catalytic deoxygenation of Jatropha curcas oil[J]. J Clean Prod, 2016, 167:1048-1059. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6edd1a2dff7bdb4bb479b99b12fe2e70
    [25] CHEN J X, SHI H, LI L, LI K L. Deoxygenation of methyl laurate as a model compound to hydrocarbons on transition metal phosphide catalysts[J]. Appl Catal B:Environ, 2014, 144:870-884. doi: 10.1016/j.apcatb.2013.08.026
    [26] SRIFA A, FAUNGNAWAKIJ K, ITTHIBENCHAPONG V, VIRIYA-EMPIKUL N, CHARINPANITKUL T, ASSABUMRUNGRAT S. Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst[J]. Bioresour Technol, 2014, 158:81-90. doi: 10.1016/j.biortech.2014.01.100
    [27] PATTANAIK B P, MISRA R D. Effect of reaction pathway and operating parameters on the deoxygenation of vegetable oils to produce diesel range hydrocarbon fuels:A review[J]. Renewable Sustainable Energy Rev, 2017, 73:545-557. doi: 10.1016/j.rser.2017.01.018
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  78
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-25
  • 修回日期:  2019-10-28
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-12-10

目录

    /

    返回文章
    返回