留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu/ZnO催化糠醛气相加氢制2-甲基呋喃的研究

黄玉辉 任国卿 孙蛟 陈晓蓉 梅华

黄玉辉, 任国卿, 孙蛟, 陈晓蓉, 梅华. Cu/ZnO催化糠醛气相加氢制2-甲基呋喃的研究[J]. 燃料化学学报(中英文), 2016, 44(11): 1349-1355.
引用本文: 黄玉辉, 任国卿, 孙蛟, 陈晓蓉, 梅华. Cu/ZnO催化糠醛气相加氢制2-甲基呋喃的研究[J]. 燃料化学学报(中英文), 2016, 44(11): 1349-1355.
HUANG Yu-hui, REN Guo-qing, SUN Jiao, CHEN Xiao-rong, MEI Hua. Study on the vapor phase hydrogenation of furfural to 2-methylfuran on Cu/ZnO catalyst[J]. Journal of Fuel Chemistry and Technology, 2016, 44(11): 1349-1355.
Citation: HUANG Yu-hui, REN Guo-qing, SUN Jiao, CHEN Xiao-rong, MEI Hua. Study on the vapor phase hydrogenation of furfural to 2-methylfuran on Cu/ZnO catalyst[J]. Journal of Fuel Chemistry and Technology, 2016, 44(11): 1349-1355.

Cu/ZnO催化糠醛气相加氢制2-甲基呋喃的研究

详细信息
    通讯作者:

    陈晓蓉, Tel:025-83172254, E-mail:chenxr@126.com

  • 中图分类号: O643.38

Study on the vapor phase hydrogenation of furfural to 2-methylfuran on Cu/ZnO catalyst

  • 摘要: 通过共沉淀法制备一系列铜锌催化剂,用于固定床上糠醛气相加氢制2-甲基呋喃的研究。采用X射线衍射仪(XRD)、N2吸附-脱附、扫描电子显微镜(SEM)、H2-程序升温还原(H2-TPR)、NH3-程序升温脱附(NH3-TPD)表征,分析催化剂中Cu0和ZnO在催化反应中的作用。结果表明,Cu0是糠醛加氢的活性中心,氧化锌的加入减小了催化剂晶粒粒径、增大了催化剂比表面积、利于催化剂还原和增加催化剂表面弱酸性位。当Cu/Zn物质的量比为1:2时,Cu1Zn2催化剂具有适宜氧化还原活性中心及弱酸位数量,对2-甲基呋喃表现出较高的选择性。Cu1Zn2催化剂在常压、反应温度为200℃、氢醛物质的量比为4:1、糠醛体积空速为0.3 h-1条件下,糠醛转化率100.0%,2-甲基呋喃选择性最高为93.6%。反应稳定运行200 h后,糠醛转化率仍为100.0%,2-甲基呋喃选择性为80.0%,糠醇选择性为11.4%。
  • 图  1  糠醛加氢过程中主要产物的分布

    Figure  1  Distribution of the main products in the process of furfural hydrogenation

    图  2  催化剂的SEM照片

    Figure  2  SEM images of the catalysts

    (a): Cu1Zn4; (b): Cu1Zn2; (c): Cu1Zn1; (d): Cu1Zn0.67; (e): Cu1Zn0

    图  3  铜锌氧化态样品的XRD谱图

    Figure  3  XRD spectra of the CuZn oxides

    a: Cu1Zn4; b: Cu1Zn2; c: Cu1Zn1; d: Cu1Zn0.67; e: Cu1Zn0

    图  4  铜锌催化剂还原后的XRD谱图

    Figure  4  XRD spectra of reduced CuZn catalysts

    a: Cu1Zn4; b: Cu1Zn2; c: Cu1Zn1; d: Cu1Zn0.67; e: Cu1Zn0

    图  5  催化剂的H2-TPR谱图

    Figure  5  H2-TPR profiles of the catalysts

    a: Cu1Zn4; b: Cu1Zn2; c: Cu1Zn1; d: Cu1Zn0.67; e: Cu1Zn0

    图  6  催化剂的NH3-TPD谱图

    Figure  6  NH3-TPD profiles of the catalysts

    a: Cu1Zn0; b: Cu1Zn4; c: Cu1Zn2; d: Cu1Zn1; e: Cu1Zn0.67; f: Cu0Zn1

    图  7  反应温度对催化性能的影响

    Figure  7  Effects of reaction temperature on catalytic performance

    图  8  氢醛物质的量比对催化性能的影响

    Figure  8  Effects of the mol ratios of hydrogen to furfural on catalytic performance

    图  9  体积空速对催化性能的影响

    Figure  9  Effects of the volume space velocity of furfural on the catalytic performance

    图  10  Cu1Zn2催化剂上糠醛加氢制2-甲基呋喃的稳定性

    Figure  10  Stability test of hydrogenation of furfural to 2-methylfuran over Cu1Zn2

    表  1  铜锌催化剂的比表面积及还原前后的晶粒粒径

    Table  1  BET analysis, crystal sizes of calcined and reduced Cu/ZnO catalysts

    Catalyst ABET /(m2·g-1) Crystal size d/nm
    calcined sample reduced sample
    CuO ZnO Cu0 ZnO
    Cu1Zn4 40.6 10.4 14.6 13.4 16.4
    Cu1Zn2 41.7 11.1 13.5 16.4 14.4
    Cu1Zn1 38.0 11.2 12.0 16.7 18.2
    Cu1Zn0.67 25.0 12.1 11.9 17.4 22.4
    Cu1Zn0 6.0 14.8 - 28.6 -
    下载: 导出CSV

    表  2  铜锌催化剂的性能评价

    Table  2  Evaluation of catalytic performance over Cu/ZnO

    Catalyst FFR
    conversion x/%
    Product selectivity s/%
    2-MF FOL THFA MTHF 1-pentanol others
    Cu1Zn4 100.0 88.7 4.1 - 0.8 0.4 6.0
    Cu1Zn2 100.0 93.6 0.5 - 1.4 0.6 3.9
    Cu1Zn1 100.0 92.0 - - 2.3 1.8 3.9
    Cu1Zn0.67 100.0 87.9 - - 3.3 3.3 5.5
    Cu1Zn0 99.2 8.8 86.4 2.5 0.4 - 1.9
    下载: 导出CSV
  • [1] VAN P, R J, JCV D W, DE J E. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources[J]. Chem Rev, 2013, 113(3):1499-1597. doi: 10.1021/cr300182k
    [2] BINDER J B, RAINES R T. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals[J]. J Am Chem Soc, 2009, 131(5):1979-1985. doi: 10.1021/ja808537j
    [3] MAMMAN A S, LEE J M, KIM Y C. Furfural:Hemicellulose/xylosederived biochemical[J]. Biofuel Bioprod Bior, 2008, 2(5):438-454. doi: 10.1002/bbb.v2:5
    [4] PACE V, HOYOS P, CASTOLDI L. ChemInform abstract:2-methyltetrahydrofuran (2-MeTHF):A biomass-derived solvent with broad application in organic chemistry[J]. ChemSusChem, 2012, 5(8):1369-1379. doi: 10.1002/cssc.v5.8
    [5] BIRADAR N S, HENNGNE A M, BIRAJDAR S N. Single-pot formation of THFAL via catalytic hydrogenation of FFR over Pd/MFI catalyst[J]. Acs Sustainable Chem Eng, 2013, 2(2):272-281. https://www.researchgate.net/profile/Narayan_Biradar/publication/258993551_Single-pot_formation_of_THFAL_via_catalytic_hydrogenation_of_FFR_over_PdMFI_catalyst/links/02e7e5298c86842219000000.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail
    [6] HUBER G W, SARA I A, CORMA A. Synthesis of transportation fuels from biomass:Chemistry, catalysts, and engineering[J]. Chem Rev, 2006, 106(9):4044-4498. doi: 10.1021/cr068360d
    [7] XIAO M, JING C, XU H. Laminar burning characteristics of 2-methylfuran and isooctane blend fuels[J]. Fuel, 2014, 116(1):281-291. https://www.researchgate.net/profile/Hongming_Xu3/publication/262937481_Laminar_burning_characteristics_of_2-methylfuran_and_isooctane_blend/links/56efd74808ae3c65343653e3.pdf?origin=publication_detail
    [8] BURNETTL W, JOHNS I B, HOLDREN R F. Production of 2-methylfuran by vapor-phase hydrogenation of furfural[J]. Ind Eng Chem, 2002, 74(2):129-130. https://www.researchgate.net/publication/231384595_Production_of_2-Methylfuran_by_Vapor-Phase_Hydrogenation_of_Furfural
    [9] 吴静, 申延明, 王坤院. CuO-CaO/SiO2超细催化剂结构及糠醛加氢反应性能的研究[J].分子催化, 2003, 17(5):321-325. http://www.oalib.com/paper/4480393

    WU Jing, SHEN Yan-ming, WANG Kun-yuan. Study on structure of CuO-CaO/SiO2 ultrafine catalysts and reaction performance for hydrogenation of furfural[J]. J Mol Catal, 2003, 17(5):321-325. http://www.oalib.com/paper/4480393
    [10] 苗小培, 冯海强, 黄文氢.纳米级CuO催化剂的制备及其糠醛加氢催化性能[J].石油化工, 2015, 44(8):975-979. http://d.wanfangdata.com.cn/Periodical/syhg201508012

    MIAO Xiao-pei, FENG Hai-qiang, HUANG Wen-qing. Preparation and catalytic properties of nanometer CuO catalyst for hydrogena[J]. Petrochem Technol, 2015, 44(8):975-999. http://d.wanfangdata.com.cn/Periodical/syhg201508012
    [11] KAI Y, XU W, XIA A, XIAN M X. Novel preparation of nano-composite CuO-Cr2O3 using ctab-template method and efficient for hydrogenation of biomass-derived furfural[J]. Funct Mater Lett, 2013, 6(1):130-140. http://adsabs.harvard.edu/abs/2013FML.....650007Y
    [12] HUANG W, LI H, ZHU B, FENG Y. Selective hydrogenation of furfural to furfuryl alcohol over catalysts prepared via sonochemistry[J]. Ultrason Sonochem, 2007, 14(1):67-74. doi: 10.1016/j.ultsonch.2006.03.002
    [13] DONG F, ZHU Y, ZHENG H. Cr-free Cu-catalysts for the selective hydrogenation of biomass-derived furfural to 2-methylfuran:The synergistic effect of metal and acid sites[J]. J Mol Catal A:Chem, 2015, 398:140-148. doi: 10.1016/j.molcata.2014.12.001
    [14] NAKAGAWA Y, TAMURA M, TOMISHIGE K. Catalytic reduction of biomass-derived furanic compounds with hydrogen[J]. Acs Catal, 2013, 3(12):2655-2668. doi: 10.1021/cs400616p
    [15] 黄玉辉, 任国卿, 孙蛟, 王重庆, 陈晓蓉, 梅华.沉淀剂对CuZnAl催化剂糠醛气相加氢制糠醇选择性的影响[J].燃料化学学报, 2016, 44(6):726-731. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18851.shtml

    HUANG Yu-hui, REN Guo-qing, SUN Jiao, WANG Chong-qing, CHEN Xiao-rong, MEI Hua. Effect of precipitant on the performance of CuZnAl catalysts in the gas phase selective hydrogenation of furfural to furfuryl alcohol[J]. J Fuel Chem Technol, 2016, 44(6):726-731. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18851.shtml
    [16] YANG J, ZHENG H Y, ZHU Y L. Effects of calcination temperature on performance of Cu-Zn-Al catalyst for synthesizing γ-butyrolactone and 2-methylfuran through the coupling of dehydrogenation and hydrogenation[J]. Catal Commun, 2004, 5(9):505-510. doi: 10.1016/j.catcom.2004.06.005
    [17] 房德仁, 刘中民, 张慧敏.沉淀温度对CuO/ZnO/Al2O3系催化剂前驱体性质的影响[J].天然气化工:C1化学与化工, 2004, 29(4):28-32. http://www.cnki.com.cn/Article/CJFDTotal-TRQH200404007.htm

    FANG De-ren, LIU Zhong-ming, ZHANG Hui-ming. Influence of temperature on the properties of precursors of CuO/ZnO/Al2O3 catalysts[J]. Nat Gas Chem Ind, 2004, 29(4):28-32. http://www.cnki.com.cn/Article/CJFDTotal-TRQH200404007.htm
    [18] 姜广申, 胡云峰, 蔡俊.仲丁醇脱氢制甲乙酮的Cu-ZnO催化剂[J].化工进展, 2013, 32(2):352-358. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201302020.htm

    JIANG Guang-shen, HU Yun-feng, CAI Jun. Research of Cu-ZnO catalysts for sec-butanol dehydrogenation to methyl ethyl ketone[J]. Chem Ind Eng Prog, 2013, 32(2):352-358. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201302020.htm
    [19] CHOI Y, FUTAGAMI K, FUJITANI T. The role of ZnO in Cu/ZnO methanol synthesis catalysts morphology effect or active site model[J]. Appl Catal A:Gen, 2001, 208(1/2):163-167.
    [20] PARK S W, JOO O S, JUNG K D. Development of ZnO/Al2O3 catalyst for reverse-water-gas-shift reaction of CAMERE (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) process[J]. Appl Catal A:Gen, 2001, 211(1):81-90. doi: 10.1016/S0926-860X(00)00840-1
    [21] PEI T, LIU L, XU L. A novel glass fiber catalyst for the catalytic combustion of ethyl acetate[J]. Catal Commun, 2015, 74:19-23. https://www.researchgate.net/publication/283465666_A_novel_glass_fiber_catalyst_for_the_catalytic_combustion_of_ethyl_acetate
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  42
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-07
  • 修回日期:  2016-08-06
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-11-10

目录

    /

    返回文章
    返回