留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于直接甲醇燃料电池的高活性PtCo-CNT@TiO2复合纳米阳极催化剂

吕银荣 孙维艳 王峰

吕银荣, 孙维艳, 王峰. 用于直接甲醇燃料电池的高活性PtCo-CNT@TiO2复合纳米阳极催化剂[J]. 燃料化学学报(中英文), 2019, 47(12): 1522-1528.
引用本文: 吕银荣, 孙维艳, 王峰. 用于直接甲醇燃料电池的高活性PtCo-CNT@TiO2复合纳米阳极催化剂[J]. 燃料化学学报(中英文), 2019, 47(12): 1522-1528.
LÜ Ying-rong, SUN Wei-yan, WANG Feng. Highly active PtCo-CNT@TiO2 composite nanoanode catalyst for direct methanol fuel cells[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1522-1528.
Citation: LÜ Ying-rong, SUN Wei-yan, WANG Feng. Highly active PtCo-CNT@TiO2 composite nanoanode catalyst for direct methanol fuel cells[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1522-1528.

用于直接甲醇燃料电池的高活性PtCo-CNT@TiO2复合纳米阳极催化剂

基金项目: 

山西省自然科学基金 201701D121040

详细信息
  • 中图分类号: TM911.4

Highly active PtCo-CNT@TiO2 composite nanoanode catalyst for direct methanol fuel cells

Funds: 

the Shanxi Natural Science Foundation 201701D121040

More Information
  • 摘要: 采用溶胶凝胶法制备CNT@TiO2载体,利用电沉积法制备用于直接甲醇燃料电池的PtCo-CNT@TiO2阳极催化剂。采用透射电子显微镜(TEM)、X射线衍射(XRD)和电化学工作站对其进行表征。结果表明,PtCo-CNT@TiO2复合纳米材料有明显的结晶,且金属粒子围绕在TiO2包覆的碳纳米管的周围,用于直接甲醇燃料电池阳极催化剂具有较高的活性与稳定性。该PtCo-CNT@TiO2催化剂的电化学比表面积为164 m2/g,65 ℃时甲醇的氧化峰电流达到45 mA/cm2,计时电流曲线表明300 s后PtCo-CNT@TiO2的氧化电流趋于24 mA/cm2,在碱性条件下甲醇的氧化峰电流为39.7 mA/cm2
  • 图  1  CNT@TiO2、Pt-CNT@TiO2和PtCo-CNT@TiO2复合催化剂的XRD谱图

    Figure  1  XRD patterns of CNT@TiO2, Pt-CNT@TiO2 and PtCo-CNT@TiO2 composite catalysts

    (a): full spectra; (b): partially enlarged spectra
    ■: TiO2; ●: Pt

    图  2  PtCo-CNT@TiO2催化剂的TEM照片

    Figure  2  TEM images of CNTs without loading any active species (a) and PtCo-CNT@TiO2 (b)

    图  3  催化剂在硫酸甲醇溶液中的循环伏安曲线、电化学比表面积和氢吸附量和电化学阻抗

    Figure  3  Cyclic voltammetric curve, surface area and hydrogen adsorption chart of various catalysts in methanol sulfate solution and electrochemical impedance map

    (a): cyclic voltammogram of CNT@TiO2; (b): cyclic voltammogram of Pt-CNT@TiO2 and PtCo-CNT@TiO2; (c): electrochemical surface area and hydrogen adsorption capacity of Pt-CNT@TiO2 and PtCo-CNT@TiO2; (d): electrochemical impedance of CNT, CNT@TiO2, Pt-CNT@TiO2 and PtCo-CNT@TiO2

    图  4  甲醇在复合催化剂上电催化氧化的循环伏安曲线

    Figure  4  Cyclic voltammograms of electrocatalytic methanol oxidation on the composite catalysts

    a: forward scan cyclic voltammetry curve for PtCo-CNT@TiO2; b: reverse scan cyclic voltammetry curve for PtCo-CNT@TiO2; c: forward scan cyclic voltammetry curve for Pt-CNT@TiO2; d: reverse scan cyclic voltammetry curve for Pt-CNT@TiO2

    图  5  不同金属比例催化剂循环伏安曲线

    Figure  5  Cyclic voltammetry curves of various catalysts with different metal ratios

    图  6  PtCo-CNT@TiO2在0.5mmol/L H2SO4+0.5mmol/L CH3OH溶液中的计时电流曲线

    Figure  6  Curves of the polarization current vs. time for PtCo-CNT@TiO2 in 0.5mol/L H2SO4 + 0.5mol/L methanol at room temperature

    图  7  PtCo-CNT@TiO2不同温度下电催化氧化的循环伏安曲线

    Figure  7  Cyclic voltammograms curves of PtCo-CNT@TiO2 electrocatalytic oxidation at different temperatures

    图  8  PtCo-CNT@TiO2不同扫描速率电催化氧化的循环伏安曲线(a)和I vs v1/2图(b)

    Figure  8  Cyclic voltammograms curves of PtCo-CNT@TiO2 for electrocatalytic oxidation at different scanning velocities (a) and I vs v1/2 diagrams (b)

    图  9  PtCo-CNT@TiO2在酸碱性不同的甲醇溶液中的催化行为

    Figure  9  Catalytic behavior of PtCo-CNT@TiO2 in methanol solution with different acidities

    (a): cyclic voltammetry curve measured under acidic conditions; (b): cyclic voltammetry curve measured under neutral conditions; (c): cyclic voltammetry curve measured under alkaline conditions; (d): cyclic voltammetry curve measured by commercial catalyst

  • [1] HU L Q. Proton exchange membrane fuel cell[J]. Chin Battery Ind, 2002, 7(Z1):225-231. http://d.old.wanfangdata.com.cn/Periodical/gdxxhxxb201605026
    [2] LUO Y L, LIANG Z X, LIAO S J. Recent development of anode electrocatalysts for direct methanol fuel cells[J]. Chin J Catal, 2010, 31(2):141-149.
    [3] GIORGI L, GIORGI R, GAG-LIARDI S, SALERNITANO E, DIKON-IMOS T, LISI N, DE FEDERICA M, RICCAR-DIS, ALVISI M. Pt alloys on carbon nanostructures as electrocatalysts for direct methanol fuel cell[J]. Adv Sci Technol, 2010, 72:277-282. doi: 10.4028/www.scientific.net/AST.72.277
    [4] LIU Z L, LEE J Y, HAN M. Synthesis and characterization of PtRu/C catalysts from microemulsions and emulsions[J]. J Mater Chem, 2002, 12(8):2453-2458. doi: 10.1039/b200875k
    [5] GUO J W, ZHAO T S, PRABHURAM J, CHEN R, WONG C W. Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells[J]. Electrochim Acta, 2006, 51(4):754-763. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5c32cc94842f76a80059d829d9ab71fc
    [6] HASSAN A, PAGANI N, VALDECIR A, TICIANELL I, EDSON A. Effect of addition of Ru and/or Fe in the stability of PtMo/C electrocatalysts in proton exchange membrane fuel cells[J]. Electrocatalysis, 2015, 6(6):512-520. doi: 10.1007/s12678-015-0269-7
    [7] YU P, PEMBERTON M, PLASSE P. PtCo/C cathode catalyst for improved durability in PEMFCs[J]. J Power Sources, 2005, 144(1):11-20. doi: 10.1016/j.jpowsour.2004.11.067
    [8] AMUSSEN R M, HOLTHINDLE P, NIGRO S. Comparative study of nanoporous Pt, PtRu and PtRuIr catalysts using electrochemical FT-IR spectroscopy[J]. Electrochem, 2010, 16(3):263-272.
    [9] WU Y N, LIAO S J. Shortened carbon nanotubes as supports to prepare high-performance Pt/SCNT and PtRu/SCNT catalysts for fuel cells[J]. Acta Phys-Chim Sin, 2010, 26(3):669-674(6). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201003023
    [10] NETO A O, DIAS R R, TUSI M M, LINARDI M, SPINACE E V. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process[J]. J Power Sources, 2007, 166(1):87-91. doi: 10.1016/j.jpowsour.2006.12.088
    [11] PARK K W, AHN K S, CHOI J H, NAH Y C, SUNG Y E. PtRu-WO3 nanostructured alloy electrode for use in thin-film fuel cells[J]. Appl Phys Lett, 2003, 82(7):1090-1092. doi: 10.1063/1.1545153
    [12] RODRIGUES R M S, TUSI M M, CHIKASAWA M H, FORBICINI C A L G O, LINARDI M, SPINACÉE V, OLIVEIRA NETO A. Preparation and characterization of PtRu/C-rare earth using an alcohol-reduction process for ethanol electro-oxidation[J]. Ionics, 2011, 17(2):189-193. doi: 10.1007/s11581-011-0519-5
    [13] 钟盛文, 胡仙超, 俞园, 余长林, 周阳.核壳结构碳化钨复合微球催化剂对甲醇电催化性能[J].燃料化学学报, 2018, 46(5):585-591. doi: 10.3969/j.issn.0253-2409.2018.05.011

    ZHONG Sheng-wen, HU Xian-chao, YU Yuan, YU Chang-lin, ZHOU Yang. Electrocatalytic performance of core-shell tungsten carbide composite microsphere catalyst for methanol[J]. J Fuel Chem Technol, 2018, 46(5):585-591. doi: 10.3969/j.issn.0253-2409.2018.05.011
    [14] SUN S H, Zhang G X, GENG D S, CHEN Y G, BANIS M N, LI R Y, CAI M, SUN X L. Direct growth of single-crystal Pt nanowires on Sn@CNT nanocable:3D electrodes for highly active electrocatalysts[J]. Chemistry, 2010, 16(3):829-835.
    [15] BEDOLLA Z I, VERDE Y, VALENZUELA A M, GOCHI Y, OROPEZA M T, BERHAULTE G, ALONSO G. Sonochemical synthesis and characterization of Pt/CNT, Pt/TiO2, and Pt/CNT/TiO2, electrocatalysts for methanol electro-oxidation[J]. Electrochim Acta, 2015, 186:76-84. doi: 10.1016/j.electacta.2015.10.084
    [16] 王旭红, 朱慧, 黄金山, 纪网金, 骆秀淇.新型碳纤维负载直接乙醇燃料电池Pt-SnO2阳极催化剂的性能研究[J].燃料化学学报, 2014, 42(6):763-768. http://www.ccspublishing.org.cn/article/id/100033155

    WANG Xu-hong, ZHU Hui, HUANG Jin-shan, JI Wang-jin, LUO Xiu-qi. Performance of Pt-SnO2 anode catalyst for carbon fiber supported direct ethanol Fuel Cell[J]. J Fuel Chem Technol, 2014, 42(6):763-768. http://www.ccspublishing.org.cn/article/id/100033155
    [17] CHEN M L, ZHANG F J, OH W H. Synthesis, characterization, and photocatalytic analysis of CNT/TiO2 composites derived from MWCNTs and titanium sources[J]. New Carbon Mater, 2009, 24(2):0-166. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xxtcl200902012
    [18] WANG C, WAJESN M, WANG X, TANG J M. Proton exchange membrane fuel cells with carbon nanotube based electrodes[J]. Nano Lett, 2004, 4(2):345-348. doi: 10.1021/nl034952p
    [19] CLÁUDIA G, SILVA, WANG W D, FARIA J L. Nanocrystalline CNT-TiO2 composites produced by an acid catalyzed sol-gel method[J]. Mater Sci Forum, 2008, 587/588:849-853. doi: 10.4028/www.scientific.net/MSF.587-588.849
    [20] ZHAO H X, LI H F, YU H T, CHANG H M, QUAN X, CHEN S. CNTs-TiO2/Al2O3 composite membrane with a photocatalytic function:Fabrication and energetic performance in water treatment[J]. Sep Purif Technol, 2013, 116(37):360-365.
    [21] SUDACHOM M, WARAKULWIT C, PRAPAINAINAR C, WITOON T, PRAPAINAINARA P. One step NaBH4 reduction of Pt-Ru-Ni catalysts on different types of carbon supports for direct ethanol fuel cells:Synthesis and characterization[J]. J Fuel Chem Technol, 2017, 45(5):596-607. doi: 10.1016/S1872-5813(17)30031-2
    [22] KURI GANOVA A B, LEONTYEV I N, ALEXANDRIN A S, MASLOVA O A, RAKHMATULLIN A I, SMIRONVA N V. Electrochemically synthesized Pt/TiO2-C catalysts for direct methanol fuel cell applications[J]. Mendeleev Commun, 2017, 27(1):67-69. doi: 10.1016/j.mencom.2017.01.021
    [23] 陈伟, 廖卫平, 金明善, 索掌怀.壳聚糖修饰炭黑负载Pt-Au催化剂对甲醇氧化的电催化性能[J].燃料化学学报, 2012, 40(12):1459-1465. doi: 10.3969/j.issn.0253-2409.2012.12.008

    CHEN Wei, LIAO Wei-ping, JING Ming-shan, SUO Zhang-huai. Electrocatalytic performance of Pt-Au catalyst supported on carbon black modified by chitosan for methanol oxidation[J]. J Fuel Chem Technol, 2012, 40(12):1459-1465. doi: 10.3969/j.issn.0253-2409.2012.12.008
    [24] 周阳, 胡仙超, 刘喜慧, 屈慧男, 温和瑞, 余长林.中空树枝状三氧化钨载铂催化剂对甲醇的电催化氧化性能研究[J].燃料化学学报, 2015, 43(2):251-256. doi: 10.3969/j.issn.0253-2409.2015.02.017

    ZHOU Yang, HU Xian-chao, LIU Xi-hui, QU Hui-nan, WEN He-rui, YU Chang-lin. Study on the electrocatalytic oxidation of methanol over hollow dendritic tungsten trioxide supported platinum catalyst[J]. J Fuel Chem Technol, 2015, 43(2):251-256. doi: 10.3969/j.issn.0253-2409.2015.02.017
    [25] JALAN R, TURJANSKI N, TAYLOR-ROBINSON S D, KOEPP M J, RICHARDSON M P, WILSON J A, BELL J D, BROOKS D J. Increased availability of central benzodiazepine receptors in patients with chronic hepatic encephalopathy and alcohol related cirrhosis[J]. Gut, 2000, 46(4):546. doi: 10.1136/gut.46.4.546
    [26] WEI L, LANE A M. Resolving the HUPD and HOPD by DEMS to determine the ECSA of Pt electrodes in PEM fuel cells[J]. Electrochem Commun, 2011, 13(9):913-916. doi: 10.1016/j.elecom.2011.05.028
    [27] ZHAO Y L, WANG Y H, ZANG J B, LU J, XU X P. A novel support of nano titania modified graphitized nanodiamond for Pt electrocatalyst in direct methanol fuel cell[J]. Int J Hydrogen Energy, 2015, 40(13):4540-4547. doi: 10.1016/j.ijhydene.2015.02.041
    [28] VILIAN A T E, HWANG S K, KWAK C H, OH S Y, KIM C Y, LEE G-W, LEE J B, HUH Y K, HANL Y-K. Pt-Au bimetallic nanoparticles decorated on reduced graphene oxide as an excellent electrocatalysts for methanol oxidation[J]. Synth Met, 2016, 219:52-59. doi: 10.1016/j.synthmet.2016.04.013
    [29] CAO J Y, CHEN M, CHENG L, WANG S J, ZOU Z Q, LI Z L, DANIEL L, AKINS D K, YANG H. Double microporous layer cathode for membrane electrode assembly of passive direct methanol fuel cells[J]. Int J Hydrogen Energy, 2010, 35(10):4622-4629. doi: 10.1016/j.ijhydene.2010.02.012
    [30] CAO X, WANG N, HAN Y, XU Y, LI M X, SHAO Y H. PtAg bimetallic nanowires:Facile synthesis and their use as excellent electrocatalysts toward low-cost fuel cells[J]. Nano Energy, 2015, 12(12):105-114.
    [31] WU L, XU T W, WU D, ZHENG X. Preparation and characterization of CPPO/BPPO blend membranes for potential application in alkaline direct methanol fuel cell[J]. J Membr Sci, 2008, 310(1/2):577-585. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6f5fa13ffb4c7e9c3c413f7a02c18f1a
    [32] SANTOS M C L, NANDENHA J, AYOUB J M S, ASSUMP O M H M T, NETO A O. Methanol oxidation in acidic and alkaline electrolytes using PtRuIn/C electrocatalysts prepared by borohydride reduction process[J]. J Fuel Chem Technol, 2018, 46(12):65-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201812007
  • 加载中
图(10)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  40
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-27
  • 修回日期:  2019-10-27
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-12-10

目录

    /

    返回文章
    返回