留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磷钨酸插层MgAl水滑石层间距的调变及催化酯化脱酸性能

王豪 李冬梅 吴雁 丁瑜

王豪, 李冬梅, 吴雁, 丁瑜. 磷钨酸插层MgAl水滑石层间距的调变及催化酯化脱酸性能[J]. 燃料化学学报(中英文), 2020, 48(1): 44-51.
引用本文: 王豪, 李冬梅, 吴雁, 丁瑜. 磷钨酸插层MgAl水滑石层间距的调变及催化酯化脱酸性能[J]. 燃料化学学报(中英文), 2020, 48(1): 44-51.
WANG Hao, LI Dong-mei, WU Yan, DING Yu. Preparation of tungstophosphoric acid intercalated MgAl layered double hydroxides with a tunable interlayer spacing and their catalytic esterification performance in the deacidification of crude oil[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 44-51.
Citation: WANG Hao, LI Dong-mei, WU Yan, DING Yu. Preparation of tungstophosphoric acid intercalated MgAl layered double hydroxides with a tunable interlayer spacing and their catalytic esterification performance in the deacidification of crude oil[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 44-51.

磷钨酸插层MgAl水滑石层间距的调变及催化酯化脱酸性能

基金项目: 

国家自然科学基金 21506176

详细信息
  • 中图分类号: O643.361

Preparation of tungstophosphoric acid intercalated MgAl layered double hydroxides with a tunable interlayer spacing and their catalytic esterification performance in the deacidification of crude oil

Funds: 

National Natural Science Foundation of China 21506176

More Information
  • 摘要: 通过改变离子交换温度和时间合成了具有不同层间距的磷钨酸(H3PW12O40,HPW)插层MgAl水滑石(LDHs),采用XRD、FT-IR、Raman、31P MAS NMR、ICP-AES和Hammett指示剂-正丁胺滴定法等表征其性质,并研究其对模型原油的催化酯化脱酸性能。高的离子交换温度有利于形成较大的层间距(d003约1.46 nm),较长的交换时间有利于形成较小的层间距(d003约1.05 nm)。不同的层间距源自HPW在层间不同的存在形式,P2W18O626-以C2轴倾斜于层板和PW11O397-以C2轴垂直于层板的方式排列于层间时,形成d003约1.46 nm的层间距;PW12O403-与层板发生嫁接,并以C2轴垂直于层板的方向排列于层间时,形成d003约1.05 nm的层间距。层间P2W18O626-和PW11O397-能产生更高比例的中强酸中心,同时大的层间距有利于反应物扩散进入层间与酸中心接触,能够提高LDHs的催化酯化脱酸性能。
  • 图  1  Mg2Al-NO3前体(a)及不同温度合成的Mg2Al-PW(b)的XRD谱图

    Figure  1  XRD patterns of the Mg2Al-NO3 precursor material (a) and the Mg2Al-PWy-1 samples synthesized at different temperatures y of 25 ℃, 60 ℃, 80 ℃, and 100 ℃ for 1 h (b)

    a: Mg2Al-PW25-1; b: Mg2Al-PW60-1; c: Mg2Al-PW80-1; d: Mg2Al-PW100-1

    图  2  Mg2Al-NO3前体及不同温度合成的Mg2Al-PW的FT-IR谱图

    Figure  2  FT-IR spectra of Mg2Al-NO3 precursor and the Mg2Al- PWy-1 samples synthesized at the different temperatures for 1 h

    a: Mg2Al-NO3; b: Mg2Al-PW25-1; c: Mg2Al-PW60-1; d: Mg2Al-PW80-1; e: Mg2Al-PW100-1

    图  3  不同时间合成的Mg2Al-PW的XRD谱图

    Figure  3  XRD patterns of Mg2Al-PW100-z samples synthesized at a temperature of 100 ℃ for different ion exchange times z

    a: Mg2Al-PW100-1; b: Mg2Al-PW100-3; c: Mg2Al-PW100-6; d: Mg2Al-PW100-12

    图  4  不同Mg/Al物质的量比具有不同层间距的MgxAl-PW的XRD谱图

    Figure  4  XRD patterns of MgxAl-PW100-z samples synthesized with different Mg/Al molar ratios (x = 3 and 4) at a temperature of 100 ℃ for different ion exchange times (z = 3 and 12 h)

    a: Mg3Al-PW100-3; b: Mg3Al-PW100-12; c: Mg4Al-PW100-3; d: Mg4Al-PW100-12

    图  5  Mg2Al-PW100-1和Mg2Al-PW100-12的Raman谱图

    Figure  5  Raman spectra of the Mg2Al-PW100-1 sample (a) and the Mg2Al-PW100-12 sample (b).

    图  6  Mg2Al-PW100-1和Mg2Al-PW100-12的31P MAS NMR谱图

    Figure  6  31P MAS NMR spectra of the Mg2Al-PW100-1 sample (a) and the Mg2Al-PW100-12 sample (b)

    图  7  不同交换时间下HPW插层MgAl LDHs的形成过程示意图

    Figure  7  Schematic formation process of HPW-intercalated MgAl LDHs synthesized at a temperature of 100 ℃ with different ion exchange times z

    表  1  不同交换时间和温度合成的MgxAl-PW的d003及S6/S8

    Table  1  Interlayer spacing d003 and the S6/S8 ratios of the areas under the S6 and S8 diffraction peaks for MgxAl-PWy-z samples synthesized with different Mg/Al molar ratios x, ion exchange temperatures y, and ion exchange times z

    Sample Temperature t/℃ Time t/h d003 (S6)/nm d003 (S8)/nm S6/S8a
    Mg2Al-PW25-1 25 1 1.44 1.07 0.04
    Mg2Al-PW60-1 60 1 1.44 1.07 0.05
    Mg2Al-PW80-1 80 1 1.44 1.07 0.11
    Mg2Al-PW100-1 100 1 1.46 1.07 0.16
    Mg2Al-PW100-3 100 3 1.44 1.06 0.08
    Mg2Al-PW100-6 100 6 1.44 1.06 0.04
    Mg2Al-PW100-12 100 12 - 1.05 0.00
    Mg3Al-PW100-3 100 3 1.47 1.10 0.13
    Mg3Al-PW100-6 100 6 1.46 1.10 0.09
    Mg3Al-PW100-12 100 12 - 1.10 0.00
    Mg4Al-PW100-3 100 3 1.49 1.10 0.12
    Mg4Al-PW100-6 100 6 1.48 1.10 0.07
    Mg4Al-PW100-12 100 12 - 1.10 0.00
    a: the ratio of peak area of S6 to that of S8
    下载: 导出CSV

    表  2  不同层间距的Mg2Al-PW的分子式

    Table  2  Extrapolated chemical formulae of Mg2Al-PWy-z samples with different S6/S8 values

    Sample Mg/Al(molar ratio) Formula
    Mg2Al-PW100-1 1.86 Mg0.65Al0.35(OH)2(PW11O39)0.02(P2W18O62)0.03(PW12O40)0.01·mH2O
    Mg2Al-PW100-3 1.78 Mg0.64Al0.36(OH)2(PW11O39)0.01(P2W18O62)0.02(PW12O40)0.05·mH2O
    Mg2Al-PW100-6 1.73 Mg0.64Al0.37(OH)2(P2W18O62)0.01(PW12O40)0.10·mH2O
    Mg2Al-PW100-12 1.71 Mg0.63Al0.37(OH)2(PW12O40)0.12·mH2O
    下载: 导出CSV

    表  3  Mg2Al-NO3和Mg2Al-PW的酸性、比表面积和催化酯化脱酸性能

    Table  3  Acidity, BET specific surface areas, and catalytic deacidification performances of Mg2Al-NO3 and Mg2Al-PWy-z catalysts

    Sample Acid strength (H0) Amount of acidic sites /(mmol·g-1) Percentage of mid-strong acidic sites /% Specific surface area A /(m2·g-1) Deacidification ratio /%
    Mg2Al-NO3 0.8≤ H0 ≤7.2 0.164 - 10.3 33.9
    0.8≤ H0 ≤7.2 0.601
    Mg2Al-PW100-1 3.86≤ H0 ≤4.8 0.203 40.8 14.6 85.9
    0.8≤ H0 ≤3.86 0.042
    0.8≤ H0 ≤7.2 0.646
    Mg2Al-PW100-3 3.86≤ H0 ≤4.8 0.198 36.7 17.1 82.4
    0.8≤ H0 ≤3.86 0.039
    0.8≤ H0 ≤7.2 0.654
    Mg2Al-PW100-6 3.86≤ H0 ≤4.8 0.199 36.4 28.4 77.5
    0.8≤ H0 ≤3.86 0.039
    0.8≤ H0 ≤7.2 0.651
    Mg2Al-PW100-12 3.86≤ H0 ≤4.8 0.197 36.1 39.2 74.2
    0.8≤ H0 ≤3.86 0.038
    下载: 导出CSV

    表  4  不同Mg/Al物质的量比MgxAl-PW的催化酯化脱酸性能

    Table  4  Catalytic deacidification performances of MgxAl-PWy-z samples with different values of x

    Sample Deacidification ratio /% Sample Deacidification ratio /% Sample Deacidification ratio /%
    Mg3Al-PW100-3 73.8 Mg3Al-PW100-6 69.1 Mg3Al-PW100-12 67.7
    Mg4Al-PW100-3 71.4 Mg4Al-PW100-6 67.4 Mg4Al-PW100-12 64.5
    下载: 导出CSV
  • [1] SLAVCHEVA E, SHONE B, TURNBULL A. Review of naphthenic acid corrosion in oilrefining[J]. Brit Corros J, 1999, 34(2):125-131. doi: 10.1179/000705999101500761
    [2] FU X, DAI Z, TIAN S, LONG J, WANG X. Catalytic decarboxylation of petroleum acids from high acid crude oils over solid acid catalysts[J]. Energy Fuels, 2008, 22(3):1923-1929. doi: 10.1021/ef7006547
    [3] DASTJERDI Z, DUBÉ M A. Acid-catalyzed esterification of naphthenic acids[J]. Environ Prog Sustainable Energy, 2013, 32(2):406-410. doi: 10.1002/ep.11606
    [4] WANG Y Z, LI J Y, SUN X Y, DUAN H L, SONG C M, ZHANG M M, LIU Y P. Removal of naphthenic acids from crude oils by fixed-bed catalytic esterification[J]. Fuel, 2014, 116:723-728. doi: 10.1016/j.fuel.2013.08.047
    [5] CAVANI F, TRIFIRÒ F, VACCARI A. Hydrotalcite-type anionic clays:Preparation, properties and applications[J]. Catal Today, 1991, 11(2):173-301. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ029328183/
    [6] 段雪, 张法智.插层组装与功能材料[M].北京:化学工业出版社, 2007.

    DUAN Xue, ZHANG Fa-zhi. Intercalation Assembly and Functional Materials[M]. Beijing:Chemistry Industry Press, 2007.
    [7] 王恩波, 胡长文.多酸化学导论[M].北京:化学工业出版社, 1998.

    WANG En-bo, HU Chang-wen. Introduction of Polyacid Chemistry[M]. Beijing:Chemistry Industry Press, 1998.
    [8] WU Y, LIU X Y, LEI Y Q, QIU Y, WANG M L, WANG H. Synthesis and characterization of 12-tungstophosphoric acid intercalated layered double hydroxides and their application as esterification catalysts for deacidification of crude oil[J]. Appl Clay Sci, 2017, 150:34-41. doi: 10.1016/j.clay.2017.09.007
    [9] POPE M T. Heteropoly and Isopoly Oxometalates[M]. Berlin:Springer, 1983.
    [10] 吴雁, 雷艳清, 刘新月, 邱月, 王豪. 12-磷钨酸插层MgAl水滑石的合成、表征及催化酯化原油脱酸性能[J].燃料化学学报, 2017, 45(9):1049-1055. doi: 10.3969/j.issn.0253-2409.2017.09.004

    WU Yan, LEI Yan-qing, LIU Xin-yue, QIU Yue, WANG Hao. Synthesis and characterization of 12-tungstophosphoric acid intercalated MgAl layered double hydroxides and their application as esterification catalysts for deacidification of crude oil[J]. J Fuel Chem Technol, 2017, 45(9):1049-1055. doi: 10.3969/j.issn.0253-2409.2017.09.004
    [11] WANG H, DUAN W, WU Y, TANG Y, LI L. Synthesis of magnesium-aluminum layered double hydroxide intercalated with ethylene glycol by the aid of alkoxides[J]. Inorg Chim Acta, 2014, 418:163-170. doi: 10.1016/j.ica.2014.04.031
    [12] JIA Y, FANG Y, ZHANG Y, MIRAS H N, SONG Y F. Classical Keggin intercalated into layered double hydroxides:Facile preparation and catalytic efficiency in Knoevenagel condensation reactions[J]. Chem-Eur J, 2015, 21(42):14862-14870. doi: 10.1002/chem.201501953
    [13] MA J J, YANG M, CHEN Q, ZHANG S S, CHENG H, WANG S Y, LIU L, ZHANG C Y, TONG Z W, CHEN Z. Comparative study of Keggin-type polyoxometalate pillared layered double hydroxides via two synthetic routes:Characterization and catalytic behavior in green epoxidation of cyclohexene[J]. Appl Clay Sci, 2017, 150:210-216. doi: 10.1016/j.clay.2017.09.030
    [14] ARCO M D, CARRIAZO D, GUTIÉRREZ S, MARTÍN C, RIVES V. Synthesis and characterization of new Mg2Al-paratungstate layered double hydroxides[J]. Inorg Chem, 2004, 43(1):375-384. doi: 10.1021/ic0347790
    [15] WEIR M R, KYDD R A. Synthesis of heteropolyoxometalate-pillared Mg/Al, Mg/Ga, and Zn/Al layered double hydroxides via LDH-hydroxide precursors[J]. Inorg Chem, 1998, 37(21):5619-5624. doi: 10.1021/ic9805067
    [16] YANG Q Z, SUN D J, ZHANG C G, WANG X J, ZHAO W A. Synthesis and characterization of polyoxyethylene sulfate intercalated Mg-Al-nitrate layered double hydroxide[J]. Langmuir, 2003, 19(14):5570-5574. doi: 10.1021/la034526j
    [17] BAJUK-BOGDANOVIĆ D, POPA A, USKOKOVIĆ-MARKOVIĆ S, HOLCLAJTNER-ANTUNOVIĆ I. Vibrational study of interaction between 12-tungstophosphoric acid and microporous/mesoporous supports[J]. Vib Spectrosc, 2017, 92:151-161. doi: 10.1016/j.vibspec.2017.06.007
    [18] ZOU K, ZHANG H, DUAN X. Studies on the formation of 5-aminosalicylate intercalated Zn-Al layered double hydroxides as a function of Zn/Al molar ratios and synthesis routes[J]. Chem Eng Sci, 2007, 62(7):2022-2031. doi: 10.1016/j.ces.2006.12.041
    [19] HOLCLAJTNER-ANTUNOVIĆ I, BAJUK-BOGDANOVIĆ D, POPA A, USKOKOVIĆ-MARKOVIĆ S. Spectroscopic identification of molecular species of 12-tungstophosphoric acid in methanol/water solutions[J]. Inorg Chim Acta, 2012, 383:26-32. doi: 10.1016/j.ica.2011.10.035
    [20] LI Z S, JIA Y, WANG J, YANG P P, JING X Y, ZHANG M L. Synthesis and characterization of tungstophosphoric acid intercalated Ni/Al HTlc with magnetite[J]. J Mater Process Technol, 2009, 209(5):2613-2619. doi: 10.1016/j.jmatprotec.2008.06.005
    [21] SMITH B J, PATRICK V A. Quantitative determination of aqueous dodecatungstophosphoric acid speciation by NMR spectroscopy[J]. Aust J Chem, 2004, 57(3):261-268. doi: 10.1071/CH02037
    [22] CHEN Y, YAN D P, SONG Y F. Tris (hydroxymethyl) aminomethane modified layered double hydroxides greatly facilitate polyoxometalate intercalation[J]. Dalton Trans, 2014, 43(39):14570-14576. doi: 10.1039/C4DT01827C
    [23] BALLESTEROS M A, ULIBARRI M A, RIVES V, BARRIGA C. Optimum conditions for intercalation of lacunary tungstophosphate (Ⅴ) anions into layered Ni (Ⅱ)-Zn (Ⅱ) hydroxyacetate[J]. J Solid State Chem, 2008, 181(11):3086-3094. doi: 10.1016/j.jssc.2008.07.037
    [24] XU L, HU C W, WANG E B. Advances in study of a new class of pillared layered microporous materials-polyoxometalate-type hydrotalcite-like catalysts[J]. J Nat Gas Chem, 1997, 6(2):155-168.
    [25] FUCHS V M, SOTO E L, BLANCO M N, PIZZIO L R. Direct modification with tungstophosphoric acid of mesoporous titania synthesized by urea-templated sol-gel reactions[J]. J Colloid Interface Sci, 2008, 327(2):403-411. doi: 10.1016/j.jcis.2008.08.045
    [26] ZHU Z, TAIN R, RHODES C. A study of the decomposition behaviour of 12-tungstophosphate heteropolyacid in solution[J]. Can J Chem, 2003, 81(10):1044-1050. doi: 10.1139/v03-129
    [27] ZHANG Y H, SU J X, WANG X P, PAN Q, QU W. Photocatalytic performance of polyoxometallate intercalated layered double hydroxide[C]//Materials Science Forum. Trans Tech Publications, 2011, 663: 187-190.
    [28] HIMENO S, TAKAMOTO M, UEDA T. Formation of α-and β-Keggin-type[PW12O40]3- complexes in aqueous media[J]. Bull Chem Soc Jpn, 2005, 78(8):1463-1468. doi: 10.1246/bcsj.78.1463
    [29] LUO Q S, LI L, WANG Z X, DUAN X. Theoretical study of the layer-anion interactions in magnesium aluminum layered double hydroxides[J]. Chin J Inorg Chem, 2001, 17(6):835-842. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wjhxxb200106012
    [30] 胡长文, 刘彦勇, 贺庆林, 张继余, 王恩波.新型层柱催化剂ZnAl-XW11Z的酯化催化活性[J].催化学报, 1996, 17(3):237-240. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600002923

    HU Chang-wen, LIU Yang-yong, HE Qing-lin, ZHANG Ji-yu, WANG En-bo. Studies on the esterification activity of a new type layer-pillared catalysts ZnAl-XW11Z[J]. Chin J Catal, 1996, 17(3):237-240. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600002923
    [31] JACOBS P A, MORTIER W J, UYTTERHOEVEN J B. Properties of zeolites in relation to their electronegativity:Acidity, carboniogenic activity and strength of interaction in transition metal complexes[J]. J Inorg Nucl Chem, 1978, 40(11):1919-1923. doi: 10.1016/0022-1902(78)80256-5
    [32] AN Z, ZHANG W, SHI H, HE J. An effective heterogeneous L-proline catalyst for the asymmetric aldol reaction using anionic clays as intercalated support[J]. J Catal, 2006, 241(2):319-327. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=699f0b4878ffc1e2cfbea41ba04b075e
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  79
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-12
  • 修回日期:  2019-10-05
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-01-10

目录

    /

    返回文章
    返回