留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pd/Al2O3 catalysts modified with Mg for catalytic combustion of methane: Effect of Mg/Al mole ratios on the supports and active PdOx formation

ZHAN Ying-ying KANG Liang ZHOU Yu-chang CAI Guo-hui CHEN Chong-qi JIANG Li-long

詹瑛瑛, 康亮, 周玉常, 蔡国辉, 陈崇启, 江莉龙. 镁助剂改性Pd/Al2O3甲烷催化燃烧催化剂:Mg/Al物质的量比对催化剂载体及活性物种形成的影响[J]. 燃料化学学报(中英文), 2019, 47(10): 1235-1244.
引用本文: 詹瑛瑛, 康亮, 周玉常, 蔡国辉, 陈崇启, 江莉龙. 镁助剂改性Pd/Al2O3甲烷催化燃烧催化剂:Mg/Al物质的量比对催化剂载体及活性物种形成的影响[J]. 燃料化学学报(中英文), 2019, 47(10): 1235-1244.
ZHAN Ying-ying, KANG Liang, ZHOU Yu-chang, CAI Guo-hui, CHEN Chong-qi, JIANG Li-long. Pd/Al2O3 catalysts modified with Mg for catalytic combustion of methane: Effect of Mg/Al mole ratios on the supports and active PdOx formation[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1235-1244.
Citation: ZHAN Ying-ying, KANG Liang, ZHOU Yu-chang, CAI Guo-hui, CHEN Chong-qi, JIANG Li-long. Pd/Al2O3 catalysts modified with Mg for catalytic combustion of methane: Effect of Mg/Al mole ratios on the supports and active PdOx formation[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1235-1244.

镁助剂改性Pd/Al2O3甲烷催化燃烧催化剂:Mg/Al物质的量比对催化剂载体及活性物种形成的影响

基金项目: 

the Natinal Nature Science Foundation of China 21878053

Natural Science Foundation of Fujian Province 2016J01057

详细信息
  • 中图分类号: O643

Pd/Al2O3 catalysts modified with Mg for catalytic combustion of methane: Effect of Mg/Al mole ratios on the supports and active PdOx formation

Funds: 

the Natinal Nature Science Foundation of China 21878053

Natural Science Foundation of Fujian Province 2016J01057

More Information
  • 摘要: 本文研究了系列不同含量镁助剂改性的Pd/Al2O3催化剂的甲烷催化燃烧反应。研究表明,随着镁添加量的增加,载体由Al2O3转变为尖晶石型MgAl2O4,进一步增加Mg/Al物质的量比至3:1时,形成了Mg(Al)Ox固溶体;催化剂中活性相Pd物种以金属Pd,PdOx或Pd-载体复合氧化物形式存在,各物种的相对含量以及Pd↔PdO间的转化能力存在一定的差异。PdOx物种表现为具有较高的低温活性,而金属Pd和Pd-载体复合氧化物的高温活性较好。当Mg/Al物质的量比为1:3时,催化剂的Pd↔PdO转化能力最强,表现出了最高的甲烷催化燃烧反应活性。
  • Figure  1  XRD patterns of the (a) Pd/Al2O3, (b) Pd/MgAl4, (c) Pd/MgAl3, (d) Pd/MgAl2 and (e) Pd/Mg3Al catalysts

    Figure  2  XRD patterns of catalyst precursors

    (a): Pd/MgAl4-p; (b): Pd/MgAl3-p; (c): Pd/MgAl2-p; (d): Pd/Mg3Al-p; -p for precursor

    Figure  3  TEM images of the (a) Pd/Al2O3, (b) Pd/MgAl4, (c) Pd/MgAl3, (d) Pd/MgAl2 and (e) Pd/Mg3Al catalysts

    Figure  4  O2-TPO profiles of Pd/MgxAlyO catalysts with different Mg/Al mole ratios as a function of temperature during heating (peak up) and cooling (peak down) cycles

    Figure  5  H2-TPR profiles of the (a) Pd/Al2O3, (b) Pd/MgAl4, (c) Pd/MgAl3, (d) Pd/MgAl2, and (e) Pd/Mg3Al catalysts

    Figure  6  H2-TPR profiles of the Pd/MgAl3 catalyst (a): after oxidizing by 2% O2/He at 500 ℃ for 1 h; (b): purging with He at 400 ℃ for 1 h before reduction

    Figure  7  Light-off curves of the Pd/MgxAlyO catalysts with different Mg/Al molar ratios for methane catalytic combustion

    Table  1  Physical-chemical properties of the Pd/MgxAlyO catalysts with different Mg/Al mole ratios

    Sample Pd loadinga/% Mg/Ala (at.) PdO crystal size b/nm ABETc/ (m2·g-1) thystersisd/ ℃ H2 consumptione/ (μmol·g-1) H2 consumption or PdOxf/ (μmol·g-1) Pd surface areag/ (m2·g-1)
    Pd/Al2O3 0.96 0 18.3 168 136 11 4.0 -
    Pd/MgAl4 0.97 1:3.8 15.1 135 144 82 68 46.5
    Pd/MgAl3 0.96 1:3.1 15.3 126 119 83 62 56.4
    Pd/MgAl2 1.04 1:1.9 13.8 122 154 72 58 67.2
    Pd/Mg3Al 0.97 3.2:1 11.9 180 280 9.0 - -
    a: determined by the ICP-OES analysis;
    b: estimated from PdO (101) diffraction peak at ca.39.5° by Scherrer equation;
    c: BET surface area calculated from N2 physisorption isotherm;
    d: temperature hysteresis (thystersis) between the heating and cooling cycles from TPO profiles in Figure 4, for example, in Pd/Al2O3 catalyst the decomposition of PdOx starts at 710 ℃ during the heating process, while the oxidation of Pd starts at 574 ℃ during the cooling process, so thystersis=(710-574) ℃ =136 ℃;
    e: H2 consumption calculated from H2-TPR profiles (sum of peak α and β);
    f: H2 consumption calculated from H2-TPR profiles (subtracting H2 consumption of peak α and β to that of peak γ);
    g: Pd surface area derived from the H2-O2 titration experiment
    下载: 导出CSV
  • [1] HAYES R E. Catalytic solutions for fugitive methane emissions in the oil and gas sector[J]. Chem Eng Sci, 2004, 59(19):4073-4080. doi: 10.1016/j.ces.2004.04.038
    [2] HONG E, KIM C, LIM D H, CHO H J, SHIN C H. Catalytic methane combustion over Pd/ZrO2 catalysts:Effects of crystalline structure and textural properties[J]. Appl Catal B:Environ, 2018, 232:544-552. doi: 10.1016/j.apcatb.2018.03.101
    [3] GLUHOI A C, NIEUWENHUYS B E. Catalytic oxidation of saturated hydrocarbons on multicomponent Au/Al2O3 catalysts:Effect of various promoters[J]. Catal Today, 2007, 119(1):305-310. http://www.sciencedirect.com/science/article/pii/S0920586106005682
    [4] TOSO A, COLUSSI S, PADIGAPATY S, DE LEITENBURG C, TROVARELLI A. High stability and activity of solution combustion synthesized Pd-based catalysts for methane combustion in presence of water[J]. Appl Catal B:Environ, 2018, 230:237-245. doi: 10.1016/j.apcatb.2018.02.049
    [5] CHEN J H, ARANDIYAN H, GAO X, LI J H. Recent advances in catalysts for methane combustion[J]. Catal Surv Asia, 2015, 19(3):140-171. doi: 10.1007/s10563-015-9191-5
    [6] SU Y Q, FILOT I A W, LIU J X, HENSENG E J M. Stable Pd-doped ceria structures for CH4 activation and CO oxidation[J]. ACS Catal, 2018, 8(1):75-80. doi: 10.1021/acscatal.7b03295
    [7] FRIBERG I, SADOKHINA N, OLSSON L. Complete methane oxidation over Ba modified Pd/Al2O3:The effect of water vapor[J]. Appl Catal B:Environ, 2018, 231:242-250. doi: 10.1016/j.apcatb.2018.03.003
    [8] DAI Q G, ZHU Q, LOU Y, WANG X Y. Role of Bronsted acid site during catalytic combustion of methane over PdO/ZSM-5:Dominant or negligible?[J]. J Catal, 2018, 357:29-40. doi: 10.1016/j.jcat.2017.09.022
    [9] CHIN Y H, GARCÍA-DIÉGUEZ M, IGLESIA E. Dynamics and thermodynamics of Pd-PdO phase transitions:Effects of Pd cluster size and kinetic implications for catalytic methane combustion[J]. J Phys Chem C, 2016, 120(3):1446-1460. doi: 10.1021/acs.jpcc.5b06677
    [10] CHIN Y H, BUDA C, NEUROCK M, IGLESIA E. Consequences of metal-oxide interconversion for C-H bond activation during CH4 reactions on pd catalysts[J]. J Am Chem Soc, 2013, 135(41):15425-15442. doi: 10.1021/ja405004m
    [11] MONTEIRO R S, ZEMLYANOV D, STOREY J M, RIBEIRO F H. Turnover rate and reaction orders for the complete oxidation of methane on a palladium foil in excess dioxygen[J]. J Catal, 2001, 199(2):291-301. doi: 10.1006/jcat.2001.3176
    [12] WILLIS J J, GALLO A, SOKARAS D, ALJAMA H, NOWAK S H, GOODMAN ED, WU L, TASSONE CJ, JARAMILLO T F, ABILD-PEDERSEN F, CARGNELLO M. Systematic structure-property relationship studies in palladium-catalyzed methane complete combustion[J]. ACS Catal, 2017, 7(11):7810-7821. doi: 10.1021/acscatal.7b02414
    [13] MURATA K, MAHARA Y, OHYAMA J, YAMAMOTO Y, ARAI S, SATSUMA A. The metal-support interaction concerning the particle size effect of Pd/Al2O3 on methane combustion[J]. Angew Chem Int Ed, 2017, 56(50):15993-15997. doi: 10.1002/anie.201709124
    [14] HUANG F J, CHEN J J, HU W, LI G X, WU Y, YUAN S D, ZHONG L, CHEN Y Q. Pd or PdO:Catalytic active site of methane oxidation operated close to stoichiometric air-to-fuel for natural gas vehicles[J]. Appl Catal B:Environ, 2017, 219:73-81. doi: 10.1016/j.apcatb.2017.07.037
    [15] FARRAUTO R J, LAMPERT J K, HOBSON M C, WATERMAN E M. Thermal decomposition and reformation of PdO catalysts; support effects[J]. Appl Catal B:Environ, 1995, 6(3):263-270. doi: 10.1016/0926-3373(95)00015-1
    [16] NILSSON J, CARLSSON P-A, FOULADVAND S, MARTIN N M, GUSTAFSON J, NEWTON M A, LUNDGREN E, GRÖNBECK H, SKOGLUNDH M. Chemistry of supported palladium nanoparticles during methane oxidation[J]. ACS Catal, 2015, 5(4):2481-2489. doi: 10.1021/cs502036d
    [17] ONN T M, ARROYO-RAMIREZ L, MONAI M, OH T S, TALATI M, FORNASIERO P, GORTE R J, KHADER M M. Modification of Pd/CeO2 catalyst by atomic layer deposition of ZrO2[J]. Appl Catal B:Environ, 2016, 197:280-285. doi: 10.1016/j.apcatb.2015.12.028
    [18] BEN SAID I, SADOUKI K, MASSE S, CORADIN T, SMIRI LS, FESSI S. Advanced Pd/CexZr(l-x)O2/MCM-41 catalysts for methane combustion:Effect of the zirconium and cerium loadings[J]. Microporous Mesoporous Mater, 2018, 260:93-101. doi: 10.1016/j.micromeso.2016.10.044
    [19] THEVENIN P O, ALCALDE A, PETTERSSON L J, JÄRÅS S G, FIERRO J L G. Catalytic combustion of methane over cerium-doped palladium catalysts[J]. J Catal, 2003, 215(1):78-86. doi: 10.1016/S0021-9517(02)00146-X
    [20] COLUSSI S, TROVARELLI A, VESSELLI E, BARALDI A, COMELLI G, GROPPI G, LLORCA J. Structure and morphology of Pd/Al2O3 and Pd/CeO2/Al2O3 combustion catalysts in Pd-PdO transformation hysteresis[J]. Appl Catal A:Gen, 2010, 390(1):1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=29f2bc79b52ef7402ea5107dca7113d8
    [21] SHI C, ZHANG P. Role of MgO over γ-Al2O3-supported Pd catalysts for carbon dioxide reforming of methane[J]. Appl Catal B:Environ, 2015, 170-171:43-52. doi: 10.1016/j.apcatb.2015.01.034
    [22] YANG L F, SHI C K, HE X E, CAI J X. Catalytic combustion of methane over PdO supported on Mg-modified alumina[J]. Appl Catal B:Environ, 2002, 38(2):117-125. doi: 10.1016/S0926-3373(02)00034-6
    [23] FENG J T, WANG H Y, EVANS D G, DUAN X, LI D Q. Catalytic hydrogenation of ethylanthraquinone over highly dispersed eggshell Pd/SiO2-Al2O3 spherical catalysts[J]. Appl Catal A:Gen, 2010, 382(2):240-245. doi: 10.1016/j.apcata.2010.04.052
    [24] LI D, LI R, LU M, LIN X, ZHAN Y, JIANG L. Carbon dioxide reforming of methane over Ru catalysts supported on Mg-Al oxides:A highly dispersed and stable Ru/Mg(Al)O catalyst[J]. Appl Catal B:Environ, 2017, 200:566-577. doi: 10.1016/j.apcatb.2016.07.050
    [25] LI D, LU M, CAI Y, CAO Y, ZHAN Y, JIANG L. Synthesis of high surface area MgAl2O4 spinel as catalyst support via layered double hydroxides-containing precursor[J]. Appl Clay Sci, 2016, 132/133:243-250. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d5211dc927ad4ca9e98415a618c52196
    [26] OHI T, MIYATA T, LI D, SHISHIDO T, KAWABATA T, SANO T, TAKEHIRA K. Sustainability of Ni loaded Mg-Al mixed oxide catalyst in daily startup and shutdown operations of CH4 steam reforming[J]. Appl Catal A:Gen, 2006, 308:194-203. doi: 10.1016/j.apcata.2006.04.025
    [27] LIN X, LI R, LU M, CHEN C, LI D, ZHAN Y, JIANG L. Carbon dioxide reforming of methane over Ni catalysts prepared from Ni-Mg-Al layered double hydroxides:Influence of Ni loadings[J]. Fuel, 2015, 162:271-280. doi: 10.1016/j.fuel.2015.09.021
    [28] CAVANI F, TRIFIRÒ F, VACCARI A. Hydrotalcite-type anionic clays:Preparation, properties and applications[J]. Catal Today, 1991, 11(2):173-301. doi: 10.1016/0920-5861(91)80068-K
    [29] SABERI A, GOLESTANI-FARD F, SARPOOLAKY H, WILLERT-PORADA M, GERDES T, SIMON R. Chemical synthesis of nanocrystalline magnesium aluminate spinel via nitrate-citrate combustion route[J]. J Alloy Compd, 2008, 462(1):142-146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=459f3f42065bd64abd67ffce88a7755c
    [30] VILLA A, GAIASSI A, ROSSETTI I, BIANCHI C L, VAN BENTHEM K, VEITH G M, PRATI L. Au on MgAl2O4 spinels:The effect of support surface properties in glycerol oxidation[J]. J Catal, 2010, 275(1):108-116. doi: 10.1016/j.jcat.2010.07.022
    [31] GROPPI G, CRISTIANI C, LIETTI L, FORZATTI P. Study of PdO/Pd transformation over alumina supported catalysts for natural gas combustion[J]. Stud Surf Sci Catal, 2000, 130:3801-3806. doi: 10.1016/S0167-2991(00)80615-1
    [32] FARRAUTO R J, HOBSON M C, KENNELLY T, WATERMAN E M. Catalytic chemistry of supported palladium for combustion of methane[J]. Appl Catal A:Gen, 1992, 81(2):227-237. doi: 10.1016/0926-860X(92)80095-T
    [33] MCCARTY J G. Kinetics of PdO combustion catalysis[J]. Catal Today, 1995, 26(3):283-293. doi: 10.1016-0920-5861(95)00150-7/
    [34] SCHWARTZ W R, PFEFFERLE L D. Combustion of methane over palladium-based catalysts:Support Interactions[J]. J Phys Chem C, 2012, 116(15):8571-8578. doi: 10.1021/jp2119668
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  67
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-15
  • 修回日期:  2019-08-08
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-10-10

目录

    /

    返回文章
    返回